
JuliaBase
Release 1.0

Torsten Bronger

Jan 16, 2025

CONTENTS

1 Introduction 1
1.1 Contact . 2
1.2 Technical overview . 2
1.3 Public releases . 2
1.4 Getting started . 2

2 A walk through JuliaBase 3
2.1 The demo site . 3
2.2 The demo accounts . 3
2.3 Rosalee: The everyday work . 4
2.4 Juliette: The assigner of work . 13
2.5 Nick: Technical service for others . 15
2.6 Sean: The team leader . 17

3 Installation 19
3.1 Prerequisites . 19
3.2 Linux configuration . 19
3.3 PostgreSQL . 20
3.4 Django . 20
3.5 JuliaBase . 20
3.6 Apache . 21

4 Programming 23
4.1 Organizing your source code . 23
4.2 Creating a new Django app . 24
4.3 Adding a new process module . 26
4.4 A more complex example: Writing a deposition module . 28
4.5 Process glossary . 30

5 Model permissions 31
5.1 Semantics and conventions . 31
5.2 Omitting permissions . 32
5.3 Django’s default permissions . 32

6 Class-based views 33
6.1 The API . 33
6.2 Main classes . 35
6.3 Mixins . 36
6.4 Sub-processes . 38

7 The remote client 41

i

7.1 Use cases . 41
7.2 Extending the remote client . 42
7.3 Local installation and usage . 43
7.4 Classes and functions . 44

8 Talking to JuliaBase 49
8.1 The big picture . 49
8.2 Installation . 49
8.3 Basic usage . 50
8.4 Error handling . 52
8.5 About passwords . 52
8.6 How do I … . 52

9 Settings reference 55
9.1 General JuliaBase settings . 55
9.2 Settings for LDAP . 57
9.3 Django settings with special meaning in JuliaBase . 60

10 Sample names 63
10.1 Name format properties . 63
10.2 Provisional sample names . 64
10.3 Initials . 64
10.4 Name prefix templates . 65

11 Hacking on JuliaBase 67
11.1 Architecture . 67
11.2 Coding guidelines . 67

12 Utilities 69
12.1 Common helpers . 69
12.2 Feed reporting . 78
12.3 Form field classes . 82
12.4 Form classes . 84
12.5 Plots . 85
12.6 URLs . 86

13 Template tags and filters 89
13.1 JuliaBase core . 89
13.2 Samples . 90

14 Markdown 95
14.1 Paragraphs . 95
14.2 Emphasis . 95
14.3 Escaping characters . 96
14.4 Special characters . 96
14.5 Math equations . 96
14.6 Links . 96
14.7 Lists . 96
14.8 Line breaks . 97

15 The JuliaBase project 99
15.1 Licenses . 99
15.2 Short project history . 100

Python Module Index 101

ii

Index 103

iii

iv

CHAPTER

ONE

INTRODUCTION

Your scientific institute or working group creates lots of samples, and your team needs a tool to keep track of them?
JuliaBase is made for exactly that! It is a database solution for samples, their processing and their characterization, with
the following features:

• intuitive browser-based interface, fully working even on mobile devices

• maximal flexibility for being adapted perfectly to your production and measurement setups, and to your workflows

• possibility to manage more than one department in a single database

• fine-grained access control

• connects to your LDAP server for user management

• keeps track of samples across sample splits

• support for pre-evaluating raw data and creating plots

• automatic notification of changes in your samples

• sample management by sample series, topics, and tags

• arbitrarily complex searches made easy, e.g. “find all samples with infrared measurements, deposited together with
a sample on glass substrate with a conductivity greater than 10−6 S/cm; oh yes, and only from this year and made
by John”

• export to spreadsheets

• automatic lab notebooks

• database interaction from own programs, e.g. for connecting your measurement setup directly to the database

• fully translatable; core is available in English and German so far

• fully brandable; adjust the look to your corporate identity and/or your taste

• mature codebase

• compliance with state-of-the-art Web standards and security considerations

• fully open source

We believe that the database should adapt to the people and the existing workflows rather than the other way round!

However, there is no free lunch … JuliaBase’s flexibility comes at a cost. You have to create the Python code to describe
your setups and apparatuses. Leaving out fancy things, this is copy, paste, and modify of < 100 lines of code for each
apparatus. JuliaBase contains code for typical processing and measurement setups that you can use as a starting point.

1

JuliaBase, Release 1.0

1.1 Contact

See The JuliaBase project for how to find the right contact person and how to get in touch with the JuliaBase community.

See also the impressum of JuliaBase’s website.

1.2 Technical overview

For better evaluation, here is a short list of the technical aspects of JuliaBase:

• JuliaBase is built on top of the Django web framework.

• JuliaBase is written 100% in the Python programming language.

• Although other setups are possible, the easiest server installation bases on Linux, PostgreSQL, and Apache.

• Hardware requirements are very low; a 100 people institute could be served by a single ordinary desktop computer.

1.3 Public releases

You can download JuliaBase fromGitHub as .tar.gz or zip files. Alternatively, you may visit the current state of the source
code repository there.

1.4 Getting started

If you want to give JuliaBase a try, visit the demo site. If you like it, the next step could be installing it. Its installation
includes the demo site, so you have immediately something up and running, and you can evaluate it even better.

If you consider actually using JuliaBase, have a look at the full table of contents. This documentation also exists in PDF
format.

2 Chapter 1. Introduction

http://www.juliabase.org/downloads/impressum.html
https://www.djangoproject.com/
https://github.com/juliabase/juliabase/releases
https://github.com/juliabase/juliabase
https://github.com/juliabase/juliabase
http://www.juliabase.org/downloads/juliabase.pdf
http://www.juliabase.org/downloads/juliabase.pdf

CHAPTER

TWO

A WALK THROUGH JULIABASE

2.1 The demo site

At https://demo.juliabase.org, a demo of JuliaBase is installed so that you can play with it a little bit. You can log in with
various accounts with different levels of permissions, add samples, processes, tasks etc., have a look at sample data sheets
or a lab notebook, and much more.

However, since this site is accessable to everyone, it may become chaotic over time. In order to prevent that, all the data
is reset every night at central european midnight. So, don’t be surprised if you have to log in again after some time – all
session data is reset, too. There is nothing to worry though as you may log in as often as you wish.

This demo site is also the default target of the remote client code shipped with JuliaBase. You are encouraged to use the
demo as a test bed for your client code.

2.2 The demo accounts

The demo site is the JuliaBase installation of the “Institute of Nifty NewMaterials” (INM). It’s a very small institute with
only six employees. All accounts have the password “12345”.

2.2.1 The boss

Sean Renard (s.renard) is the lead scientist and director of this institute. Accordingly, his JuliaBase account allows him
to view all samples, but he has got other privileges, too. More about that later.

2.2.2 The technical staff

Nick Burkhardt (n.burkhardt) is a technician in the INM for a very long time. He is responsible for the PDS setup
(photothermal deflection spectroscopy), a measurement setup. He performs measurements for researchers. He would
never let another person use his PDS.

Hank Griffin (h.griffin) is also a technician. He is responsible for the solarsimulator, another measurement setup. He
performs measurements for researchers, but after proper instructions by him, other people may use the apparatus, too.

Eddie Monroe (e.monroe) is a deposition operator. This is a technician who manages a deposition system, in his case,
the cluster tool deposition. Here too, other institute members may use this system after proper instructions.

3

https://demo.juliabase.org

JuliaBase, Release 1.0

2.2.3 The scientific staff

Rosalee Calvert (r.calvert) is a tenure scientist and creates samples by herself in the 5-chamber deposition setup. Cur-
rently, she’s the only one using this setup. Afterwards, she measures the samples in the solarsimulator. Her current project
is a cooperation with the University of Paris.

Juliette Silverton (j.silverton) is a PhD student with a lot of work. Thus, she is unable to do sample preparation and
measurements herself, and let others do it. Consequently, she makes intensive use of JuliaBase’s “task lists” feature in
order to commission the work.

2.3 Rosalee: The everyday work

Log in as r.calvert, the typical ordinary user. We will see how she gets her work done.

4 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

2.3.1 The “My Samples” list

In the main menu, you can see Rosalee’s “My Samples” on the right hand side. This list usually contains not all samples
of a user but only those that are currently of interest to him/her. Still, this list may become quite long, and is therefore

structured by topics and sample series. You may click on the bullet icons (or) in the list to fold and unfold sections
that you want to hide.

2.3.2 Topics

One sample usually belongs to exactly one topic. This helps to organise samples. For one thing, one can give topics
expressive names, which makes the samples’ purpose clear. In Rosalee’s list, all samples belong to the topic “Cooperation
with Paris University”.

But even more important is that topics define who can see the sample. The prime directive in JuliaBase is: You can only
see samples of your topics.

If a sample is in no topic, it is completely unprotected. Everyone can see it and take possession of it. There may be use
cases for that but usually, you should put all your samples in topics.

People can be in an arbitrary lot of topics at the same time, but a sample is in exactly one topic. It may change it during
its lifetime, though. Senior team members may have the permission to see all samples, whether in their topics or not.
Sean Renard is such a person.

2.3. Rosalee: The everyday work 5

JuliaBase, Release 1.0

6 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

2.3.3 Sample data sheet

2.3. Rosalee: The everyday work 7

JuliaBase, Release 1.0

Let’s visit a sample by clicking on “14S-001”. You see its data sheet. At the top, it contains some general information
like the currently responsible person and the topic. Then, you see a list of everything that has been done with this sample,
in chronological order. It starts with the substrate, is continued with the deposition of the silicon layers, and ends with a
measurement in the solar simulator.

Every such step is called a “process” in JuliaBase. Even the “Substrate” is a process, albeit a slightly odd one. Every
process has an operator and a timestamp. You can fold processes that would otherwise clobber the data sheet by clicking
on the heading.

The main work when adapting JuliaBase to a new institute is programming all the processes that the institute needs. The
solarsimulator measurement at the bottom is a good example why it is worth the effort. Just click on the colored squares,
and you see how the data and the plot change immediately. Such features are lacking in off-the-shelf databases. This high
degree of adaptability and flexibility is the primary strength of JuliaBase.

Let’s scroll back to the top. You see a schematic cross section of the sample, called an “informal stack” because it may
not be totally accurate. This is not part of JuliaBase’s core because it may not be useful for every institute. But it’s part
of the source code and you may use it. If you click on it, you get it as a PDF. This is also true for all plots in JuliaBase.

2.3.4 Edit samples

You can edit a sample by clicking on the pencil icon next to the sample’s name. “Editing a sample” refers only to
the data at the top of the data sheet. In particular, no processes are affected. Very often when you change somethin in
JuliaBase, you have to describe your changes shortly at the bottom right. It may be tedious sometimes, but it may be very
helpful to others who get notified by your changes.

2.3.5 Add processes

Also on the top of the sample data sheet there is the gear icon , which is to append a new process to the sample. If
you click on it, you are asked which kind of process you’d like to add. Let’s have a look at two possibilities: Splitting and
result process.

2.3.6 Delete samples and processes

You should never delete anything in a lab database. However, due to heavy user demands, JuliaBase has the feature to
delete samples and processes. The rules are very strict though: You can only delete a process that you may edit, and that
is not older than one hour. If you delete a sample split, all pieces are deleted, too (if you are allowed to do so). If you
delete a sample, all processes which only have this sample are deleted, too (again, if you are allowed to do so).

Split a sample

If you split samples into pieces, you surely want to keep track of that. For doing so, you click on the gear icon and
select “sample split”. Then, you can enter the new names of the samples. Usually, they extend their parent’s name. When
looking at a sample’s data sheet, you also see all processes of the parents.

8 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

Result process

Result processes, often simply called “result”, are a handy ad-hoc way to append something to a sample’s data sheet. If
you want to add a measurement result for which no dedicated process has been programmed so far, or if you want to add
a plot, a picture, or a comment, then create a result. It’s the Swiss-Army-knife process if nothing else fits. Because it’s so
flexible, be careful not to have spelling errors in order to keep searching and exporting easy.

2.3.7 Advanced search

Rosalee wants to see her best samples. For this, go back to the main menu (the house icon on the top right, or the
big text “Samples”) and select “Search for things – Advanced search”. Now, perform the following steps, clicking on
“Submit” after each step:

1. Select “sample” in the drop down menu.

2. Enter “calvert” in “currently responsible person” and select “solarsimulator measurement” in the drop-down menu
“containing”.

2.3. Rosalee: The everyday work 9

JuliaBase, Release 1.0

3. Select “AM1.5” in “irradiation”, and select “solarsimulator cell measurement” in the inner drop-down menu “con-
taining”.

4. Enter in “efficiency η“ the value “8”.

You get the result as in the image next to this text: Two of her samples match the criteria, namely “14S-002” and “14S-
003”. This means, both samples have at least one solarsimulator measurement under AM 1.5 irradiation, with at least
one cell with an efficiency greater than 8%.

Note: You may bookmark advanced searches and revisit them as often as you wish. Every time, you get new results for
your old search criteria.

2.3.8 Data export

Rosalee needs the data in her spreadsheet program. So, click yet another time on “Submit”. You may select the processes
on the sample data sheet that should be included into the output. Select the second layer of the 5-chamber deposition and
the first solarsimulator measurement. Click on “Submit”. Now, you may select the fields of these processes that should
be included into the output. Select “SiH4/sccm” (the silane flux, by the way) of the layer and “η of best cell/%” of the
solarsimulator measurement. Click on “Submit”.

The result is shown in the screenshot. The table comprises all the data that will be included into the output. Click one
last time on “Submit”, and you can download that table as a CSV file ready-to-be-opened with your favourite spreadsheet
program. When opening it, take care that columns are separated only by tabstops.

10 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

2.3.9 Add samples

From the main menu, you can click on “Add things – Samples” to add samples. Note that this page is quite institute-
specific. Your institute may not have the concept of substrates, for example, and surely not something like a “cleaning
number”. Anyway, you must enter the number of samples as well as their current location. Add a couple of samples, but
don’t rename them yet.

Fresh samples have a provisional name in JuliaBase. It looks like “*00034”, i.e., an asterisk followed by a five-digit
number. Never use these names on sample boxes or in lab notebooks. They are meant to be replaced by a real name as
quickly as possible. Rosalee’s samples get their names after the first deposition of silicon, so let’s do that now.

2.3.10 Lab notebooks

From the main menu, open the lab notebook of the five-chamber deposition. You see six depositions of October 2014.
Select one of them. JuliaBase shows you a page containing the details of only this deposition. At the top of it, click on

the gear icon in order to duplicate this deposition.

2.3.11 Add new deposition process

Rosalee duplicates old depositions because she doesn’t vary much. This way, she adds new depositions without fuss. In
the page for the new deposition, she only has to select the samples for the deposition (which are the samples recently
added, with these “*…” names), change some other things that were different in this run, and click on “Submit”.

Now, its a habit in the Institute of Nifty New Materials to give the sample the same name as the deposition. Therefore,
immediately after having added the deposition, you are redirected to a page where you can check and change the new
sample names. JuliaBase suggests the deposition’s name for all samples (in the case of the screenshot, three of them).
However, names must be unique, so Rosalee appends “…-a”, “…-b”, and “…-c” (see screenshot, second column). Click
on “Submit”, that’s it! The newly deposited samples appear with their proper names under “My Samples” on the main
menu page.

Of course, your institute may have another workflow without such renaming, which is a bad idea anyway – names in a
database should never change. So you can just leave out the renaming page in your own code.

2.3. Rosalee: The everyday work 11

JuliaBase, Release 1.0

2.3.12 Change permissions for processes

As already mentioned, Rosalee is responsible for the 5-chamber deposition setup. But let’s assume Eddie wants to do
such depositions, too, and gets an introduction? Then, he should also be allowed to add such depositions to JuliaBase.

Rosalee visits “Miscellaneous – Permissions to processes” from the main menu, selects Eddie from the drop-down menu
and clicks on “Submit”. She puts tick marks into the first two checkboxes and clicks again on “Submit”. Now Eddie has
got the following additional permissions:

• He can add new 5-chamber depositions.

• He can edit his own 5-chamber depositions (those that he’s the operator of).

• He can view all 5-chamber depositions. In particular, this implies that he can view the lab notebook.

2.3.13 Claims of samples

There is one of Juliette’s samples that Rosalee wants to acquire possession of. In principle, Juliette could set the sample’s
“currently responsible person” to Rosalee, but Juliette is reluctant to do work that also other could do (more on that later).

Moreover, sometimes you must acquire possesion of orphaned samples; or of samples that were imported as legacy data
without any ownership information. In these cases, it is really necessary to be able to claim samples. This is done in two
steps.

12 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

Adding a sample to My Samples

Rosalee clicks on “Search for things – Samples by name” in the main menu and enters the name “14-JS-2” into the field.
She puts a tick into the checkbox and clicks on “add samples”. This way, the sample 14-JS-2 is added to Rosalee’s “My
Samples”.

The actual claim

Next, Rosalee visits “Miscellaneous – Sample claims” from the main menu, and on the next page, selects “existing sam-
ples”. Here, she selects 14-JS-2, and “Sean Renard” as the reviewer of the claim (he’s the only choice anyway). That’s it.
The next page lets Rosalee review the claim. But now she has to wait for Sean (who got an automatic email) for approving
it.

2.4 Juliette: The assigner of work

Juliette has a lot to do and cannot deal with such things as sample preparation and characterization itself. Thus, she assigns
tasks to other people and analyses the results. Logout and re-login as j.silverton/12345.

2.4. Juliette: The assigner of work 13

JuliaBase, Release 1.0

2.4.1 Adding a task

Let us assume Juliette wants to have a PDS measurement for her sample 14-JS-1. Therefore, visit “Miscellaneous – Task
lists” from the main menu. There, first set up the page by selecting the processes that you’re interested in. Select “PDS
measurements” and click on “Submit”.

Now you add a new task for the PDS setup by clicking on the plus icon for PDS measurements. Select the sample
14-JS-1, click on “Submit” and you’re finished. You can see the new task in the list of tasks. There, you may withdraw

it by clicking on the minus icon , or edit it by clicking on the pencil icon .

14 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

2.4.2 Sending a sample to another user

Juliette wants to show the sample 14-JS-1 to Nick so that he can have a look at it. Of course, Nick could look for the
sample himself, but since the sample is in the topic “Juliette’s PhD thesis” and Nick isn’t, he cannot view the sample’s
data sheet.

To send the sample to Nick, click on the pencil icon next to “My samples” on the main menu page. Select the sample
14-JS-1 on the left. Then, on the right, select Nick in the multiple choice “Copy to user” and enter, say, “Please have a
look at this sample” at “Comment for recipient”. Finally, set “Clearance” to “all processes up to now”, because Juliette
wants Nick to be able to see the whole data sheet of 14-JS-1.

2.5 Nick: Technical service for others

Now login as n.burkhardt/12345. You can see 14-JS-1 under “My Samples”, and you can view its data sheet. The transfer
has worked.

2.5. Nick: Technical service for others 15

JuliaBase, Release 1.0

2.5.1 The newsfeed

Moreover, Nick has been notified by the transfer in “Main menu – Miscellaneous – Newsfeed”. There, he can also see
that Juliette has files a new task for PDS measurements because Nick has the necessary permissions for the PDS. The
newsfeed contains all important news for the respective user: Changes in their samples, new samples in their topics,
samples transferred to them, new tasks, and much more.

The newsfeed is not really intended to be view in the browser. You may do so, but it is a little bit awkward. Rather, use
a program capable of RSS feeds like Thunderbird. It is able to show you which entries in the feed are really new.

2.5.2 Tasks

Since Nick has read that Juliette had filed a new PDS task, he visits the “Task lists” page himself. When doing this the
first time, you have to select the PDS and click on “Submit” to make PDS tasks viewable to Nick.

In general, there are more than one person working at a setup like the PDS. Sometimes, people are absent (holidays,
illness, etc). Therefore, it is not a-priori clear who will actually do a task, and the task must be explicitly accepted by
someone and assigned to someone. In order to so this, click on the pencil icon to edit it. Set the “status” to “accepted”
and “operator” to Nick himself. Juliette will get notified of this.

Nick can edit all PDS tasks by clicking on the pencil icon . When Nick is actually doing the measurement, he may set
the task’s status to “in progress”, and after that, to “finished”. A finished task may even be connected with the concrete
PDS measurement.

Some of these steps are optional. It depends on your workflow. An operator might only set finished tasks to “finished”
without further ado. Or he may use all of the features offered by task lists. Or anything in between.

16 Chapter 2. A walk through JuliaBase

JuliaBase, Release 1.0

2.6 Sean: The team leader

Login as s.renard/12345. Sean, being the team leader, has extended permissions. They are:

• View all samples

• Create new topics

• Change memberships in all topics

• Grant and revoke permissions to all setups

• Approve or reject sample claims

The Institute of Nifty New Materials only has two levels: The team leader and the rest. You may add further levels in
your institution, and you may set the permissions in a different way. However, we’ve made the experience that complex
permission policies are a burden that should be avoided.

2.6.1 Approve a sample claim

Visit on the main menu “Miscellaneous – sample claims”. At the bottom of this page, you see the sample claim of Juliette.
Click on it. Sean can now review it in detail, and approve or reject it.

2.6. Sean: The team leader 17

JuliaBase, Release 1.0

18 Chapter 2. A walk through JuliaBase

CHAPTER

THREE

INSTALLATION

3.1 Prerequisites

Basically, you only need the current version of the Django web framework together with its prerequisites. Typically, this
will be a computer with a Linux operating system, and with Apache and PostgreSQL running on it. However, Django is
flexible. Is also runs on a Windows server, and it may be combined with different webservers and database backends. See
Django’s own installation guide for more information. Still, in this document, we assume the default setup, which we also
strongly recommend: Linux, Apache, PostgreSQL. We deliberately avoid mentioning any particular Linux distribution
because we assume that at least their server flavours are similar enough. For what it’s worth, the authors run Ubuntu
Server.

JuliaBase requires Python_3.4 or higher.

Mostly, no sophisticated finetuning of the components is necessary because JuliaBase deployments will serve only a few
(< 1000) people. In particular, PostgreSQL and Apache can run in default configuration by and large. On the other hand,
the computer should be a high-availability system, possibly realized with virtual machines. In our own installation, we
manage a three-nines system, i.e. 99.9 % availability. Additionally, regular backups are a must! To set up these things,
however, is beyond the scope of this document. Your IT department may turn out to be very helpful with this.

In the following, we’ll show you how to get JuliaBase up and running quickly. While our way is already useful for a
production system, you may wish or need to do it in a different way. Thus, consider the following a good starting point
for your own configuration.

3.2 Linux configuration

Additionally to the software that is running on any recent and decent Linux operating system by default anyway, you must
install:

• Apache2

• PostgreSQL (and the Python module “psycopg2” for it)

• Redis

• matplotlib

• reportlab

• tzlocal

• Python modules for YAML and markdown

• Python module “deprecation”

19

https://www.djangoproject.com/
https://docs.djangoproject.com/en/1.7/topics/install/
http://linux-ha.org/

JuliaBase, Release 1.0

3.3 PostgreSQL

If you have PostgreSQL and Apache on the same computer, PostgreSQL’s default configuration should work for you. The
defaults are quite restrictive, so they can be considered secure. Otherwise, if you need to change something, it is probably
in pg_hba.conf (where the user authentication resides) or postgresql.conf (where the general configuration resides), both
of which are typically found in /etc/postgresql/version/main/.

Anyway, you create a PostgreSQL user with this:

username@server:~$ sudo -u postgres psql
psql (9.3.4)
Type "help" for help.

postgres=# CREATE USER username WITH PASSWORD 'topsecret' CREATEDB;
CREATE ROLE
postgres=# \q

In this snippet, you have to replace username with your UNIX user name, and topsecret with a proper password,
which shouldn’t be your UNIX login password. Finally, create the database with:

username@server:~$ createdb juliabase

3.4 Django

A certain version of JuliaBase works only with a certain version of Django. For the JuliaBase 1.0 release, this is
Django 1.7. For the current Git source code, it is Django 4.0. Install it according to Django’s own instructions. No
further configuration is necessary.

3.5 JuliaBase

Download the latest public release of JuliaBase. Moreover, JuliaBase’s source code is hosted in a public Git repository
on GitHub. So if you want to use the cutting-edge JuliaBase (which probably is less reliable than the latest release), you
can clone it locally with

username@server:~$ git clone https://github.com/juliabase/juliabase.git

In any case, the JuliaBase source code contains three Django apps:

1. jb_common

2. samples

3. institute

“jb_common” implements the basic JuliaBase functionality. On top of that, “samples” implements the actual samples
database. And on top of that, “institute” implements code that is specific to the specific institution or department or work
group that wants to use JuliaBase. “institute” implements a generic institute. You will replace “institute” with your own
app.

While the naked Git repo is suitable to get JuliaBase up and running quickly, in the section “Organizing your source code” ,
we’ll explain the directory structure that you should use if you plan to actually using JuliaBase.

20 Chapter 3. Installation

http://www.postgresql.org/docs/9.1/static/auth-methods.html
http://www.postgresql.org/docs/9.1/static/runtime-config.html
https://www.djangoproject.com/download/
https://github.com/juliabase/juliabase/releases
https://github.com/juliabase/juliabase
https://github.com/juliabase/juliabase

JuliaBase, Release 1.0

3.6 Apache

Add to your Apache configuration something like the following:

<VirtualHost *:80>
ServerName juliabase.example.com
WSGIScriptAlias / /home/username/myproject/mysite/wsgi.py
Alias /static /var/www/juliabase/static
<Directory /home/username/myproject/mysite>
<Files wsgi.py>

Require all granted
</Files>

</Directory>
</VirtualHost>

This snippet contains several parts that highly probably need to be adjusted by you, in particular juliabase.
example.com, username, and all paths in general. But this should be obvious. The proper place for it de-
pends on your Linux variant. It may be the (new) file /etc/apache2/httpd.conf, or a new file in /etc/
apache2/conf.d, or a new file in /etc/apache2/sites-available with a symlink in /etc/apache2/
sites-enabled.

Moreover, you may need to set the locale environment variables for the Apache process. On Ubuntu, all that it needed to
be done is to comment out the line “. /etc/default/locale” in the file /etc/apache2/envvars. However,
this sets the locale also for non-JuliaBase applications which are served by the same Apache instance. To have more fine-
grained control, you can use mod_wsgi in daemon mode.

3.6. Apache 21

https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/modwsgi/#if-you-get-a-unicodeencodeerror
http://blog.dscpl.com.au/2014/09/setting-lang-and-lcall-when-using.html

JuliaBase, Release 1.0

22 Chapter 3. Installation

CHAPTER

FOUR

PROGRAMMING

This document explains JuliaBase for the programmer who wants to adapt it to their institute, research department, or
scientific group. It contains an overview of the process as a whole, and refers to other pages with the details. We hope
that it serves as a gentle tutorial which makes the adaption process as easy as possible. Feedback is welcomed!

For the adaption process, you should be familiar with several technologies:

1. Python. You should have advanced experience in this language. This includes the standard library; you should at
least know what it can do and how to find information about it.

2. Django. You must have mastered the tutorial of the Django web framework.

3. HTML. Basic knowledge should be enough.

Furthermode, some admin skills are necessary to get everything running.

4.1 Organizing your source code

It would be a bad idea to download JuliaBase’s source code andmodify it directly to your needs because then, any JuliaBase
update would destroy your changes. Instead, you make a structure according to this:

myproject/
manage.py
juliabase/

{the original JuliaBase release}
mysite/

__init__.py
settings.py
urls.py
wsgi.py

institute/
__init__.py
admin.py
urls.py
migrations/
models/
static/
templates/
views/
...

Thus, follow these steps:

1. Create the directory myproject/. (Don’t use Django’s startproject command here or in the following.)

2. Copy a JuliaBase release to myproject/juliabase

3. Copy the file myproject/juliabase/manage.py to myproject/.

4. Create myproject/mysite/

23

JuliaBase, Release 1.0

5. Copy the files settings.py, urls.py, and wsgi.py from myproject/juliabase/ to myproject/
mysite/

6. Create an empty file myproject/mysite/__init__.py

7. Copy recursively the directory myproject/juliabase/institute to myproject/.

4.1.1 Settings

Adjust myproject/mysite/settings.py to your needs. In particular, you probably have to change the default
database username and password to what you used in the database setup (look for DATABASES). In addition, you might
want to change the values of STATIC_ROOT and MEDIA_ROOT. For further information, take a look at the Settings
reference.

4.1.2 Git subtree

If you’re using Git, you may consider using the subtree command to get JuliaBase in your repo: You structure your
repository like above but without the juliabase subdirectory. Then, you say:

username@server:~/myproject$ git subtree add --prefix juliabase --squash \
https://github.com/juliabase/juliabase.git v1.0

A new version is pulled into your repo with:

username@server:~/myproject$ git subtree pull --prefix juliabase --squash \
https://github.com/juliabase/juliabase.git v2.0

4.2 Creating a new Django app

Okay, now let’s dive into the serious stuff.

You created your Django project, you added JuliaBase to it as explained in Organizing your source code. Furthermore,
you set up everything as explained in Installation (Apache is not yet needed). Let’s try to get it running with

username@server:~/myproject$./manage.py migrate
username@server:~/myproject$./manage.py loaddata demo_accounts
username@server:~/myproject$./manage.py collectstatic
username@server:~/myproject$./manage.py runserver

This should make the site accessible locally at the URL http://127.0.0.1:8000.

The institute app that is used is myproject/institute. For far, it is a 1:1 copy of the JuliaBase app of the same
name. The plan is to transform it into what you need by pruning and modifying it. The primary tasks when adapting the
app to your group or institution are:

1. Branding.

2. Adapting the “add new samples” page.

3. Manage the physical processes.

24 Chapter 4. Programming

http://127.0.0.1:8000

JuliaBase, Release 1.0

4.2.1 Branding

For the time being, we will stay with the app name “institute” to keep the number of changes small. Remember that it is
only the app name; you may re-brand the webpages to whatever you like. The central point of doing so is institute/
templates/jb_base.html. There, you may change the name of the institution as well as its logo. The logo file
should be placed in institute/static/institute/.

Moreover, every JuliaBase installation must have at least one department. It needs to be created only once and should be
named appropriately.

4.2.2 The “add new samples” view

JuliaBase respects that creating new samples is a rather institute-specific procedure and therefore does not include a view
for this. Instead, you must create one, but you may use the INM’s view in institute/views/samples/sample.
py as a comprehensive starting point (in particular, the function institute.views.samples.sample.add()).

In the INM, every sample starts its life with a substrate. This is a physical process that is always the very first one in the
sample’s history. Therefore, the web page where you can add new samples also asks for the substrate data, and creates
the samples together with their substrates. You may or may not wish to have substrates, too.

The second big issue is sample names. Most institutions have quite idiosyncratic ideas about the sample naming policy.
But JuliaBase is very flexible regarding this, see Sample names. In the “add new samples” view, you may let the user input
(a pattern for) the new samples right away, or you may give the names totally automatically. Or, you may do it similarly
to the INM: Let the user decide between some options, and possibly redirect to a bulk-rename view after having added
the samples with provisional names.

4.2.3 Physical processes

Physical processes are the thing that a JuliaBase programmer will spend most of its time on. They represent everything
physically available in your institution: Measurement setups, deposition setups, clean room processes, chemical treatment,
etc.

The INM app “institute” ships with some examples. You may convert them to what you need, but you can also remove
them. For the latter, visit institute/urls.py and have a look at the following part (at the bottom):

pattern_generator = PatternGenerator(urlpatterns, "institute.views.samples")
pattern_generator.deposition("ClusterToolDeposition", views={"add", "edit"})
pattern_generator.deposition("FiveChamberDeposition", "5-chamber_depositions")
pattern_generator.physical_process("PDSMeasurement", "number")
pattern_generator.physical_process("Substrate", views={"edit"})
pattern_generator.physical_process("Structuring", views={"edit"})
pattern_generator.physical_process("SolarsimulatorMeasurement")

Here, you can simply remove a line and the process is gone. Well, not entirely: You still need to remove its views module,
templates, and models in order to have everything neat and clean. But removing the URL is enough for the moment.

4.2. Creating a new Django app 25

JuliaBase, Release 1.0

4.3 Adding a new process module

So you want to add a new measurement device or manufacturing process to your JuliaBase installation. You do so by
adding new models, views, URLs, and possibly an electronic lab notebook to your app “institute”.

I will show how to do that step-by-step. In this example case, we write the code for layer thickness measurements.

4.3.1 Overview

The following steps are necessary for creating a physical process:

1. Create a database model in institute/models.py.

2. Create links in urls.py.

3. Create a view module in samples/views/. Fill the view module with an “EditView” class.

4. Create an “edit” and a “show” template in templates/.

5. (Optional) Create an electronic lab notebook.

6. (Optional) Create support for the new process in the Remote Client.

7. (Optional) Import legacy data.

In general, you will not do all of this from scratch. Instead, you will copy-and-paste from an already existing process
which is as similar to the new one as possible.

4.3.2 Creating the database models

A “database model” or simply a “model” is a class in the Python code which represents a table in the database. It defines
which things need to be stored for every thickness measurement. Since a model is a very Django-specific construction,
see the Django model documentation for the details.

Let us assume that your thickness measurements need two fields: The measured thickness and the method that was used
to measure the thickness. For the method, you want to give the user the choice between five pre-set methods.

Thus, add the following code to your models.py:

class ThicknessMeasurement(PhysicalProcess):

class Method(models.TextChoices):
PROFILERS_EDGE = "profilers&edge", _("profilers + edge")
ELLIPSOMETER = "ellipsometer", _("ellipsometer")
CALCULATED = "calculated", _("calculated from deposition parameters")
ESTIMATE = "estimate", _("estimate")
OTHER = "other", _("other")

thickness = models.DecimalField(_("layer thickness"), max_digits=6,
decimal_places=2, help_text=_("in nm"))

method = models.CharField(_("measurement method"), max_length=30,
choices=Method.choices, default=Method.PROFILERS_EDGE)

The first part defines the five choices – note that it defines pairs of strings, namely the internal name, which will be written
to the hard disk, and the descriptive name, which will be shown to the user. The descriptive name is enclosed by _(...)
to make it translatable to various languages.

Try to be as restrictive as is sensible when defining your models. In particular, mark only those fields as optional that are
really optional, set minimal and maximal values for numeric fields where applicable, and restrict the number of digits for
decimal fields. This not only forces users to enter plausible values, it also helps debugging.

26 Chapter 4. Programming

https://docs.djangoproject.com/en/dev/topics/db/models/

JuliaBase, Release 1.0

Schema migration

After you add (or change) database models, you must to a so-called schema migration. This means that the tables in the
database PostgreSQL are actually changed, so that Django can use this new structure (a.k.a. schema).

It is a good idea to test a schema migration first on a test server.

The schema migration is created and applied by saying:

./manage.py makemigrations institute

./manage.py migrate institute

The first line will create a new file in institute/migrations/. It should be added to your repository.

4.3.3 Creating the URLs

This work is done in institute/urls.py, and it is fairly simple. For the thickness measurement, you add:

pattern_generator.physical_process("LayerThicknessMeasurement")

See the methods of the class PatternGenerator for further details.

Take care that the namespace of the URL patterns has the same name as your institute app! One way to do that is to say

app_name = "institute"

at the beginning of institute/urls.py.

4.3.4 Creating the view

Typically, the view is the most complex task when creating a new kind of process. The Python file containing it must be
called process_class.py, thus in the current example, layer_thickness_measurement.py. It contains
two parts:

1. The form(s).

2. The class EditView function. This is mandatory.

The form

For such a simple process class, this is simple:

class LayerThicknessForm(samples.utils.views.ProcessForm):
class Meta:

model = LayerThicknessMeasurement
fields = "__all__"

4.3. Adding a new process module 27

JuliaBase, Release 1.0

View class

You only need to create a view class for editing, which can also be used to adding. (The display of an existing process is
handled by JuliaBase.) This view function must be defined like this:

class EditView(ProcessView):
form_class = LayerThicknessForm

For such a simple process like layer thickness measurement, that’s it! For more complex processes, you may have to
define further form classes, or do additional validation in an is_referentially_valid() method in the view
class. For the full API reference, see Class-based views. For more examples, see the view modules of the institute
app in JuliaBase’s source distribution.

4.3.5 Creating the templates

You need two templates per process, one that is called edit_process_name.html and the other that is called
show_process_name.html. Copy them from the process which is most closely related to the one you’re editing
and apply the necessary modifications. Put them into the directory institute/templates/samples/.

4.4 A more complex example: Writing a deposition module

I will show how to write a module for a deposition system by creating an example module step-by-step. The crucial
difference to the simple measurement process from above is that depositions consist of layers, and there can be arbitrarily
many of them. Every process class that needs some sort of sub-model is more complicated, as explained in the following.

4.4.1 The models

A deposition system typically needs two models: One for the deposition data and one for the layer data. The layer data
will carry much more fields than the deposition, and it will contain a pointer to the deposition it belongs to. This way,
deposition and layers are kept together. This pointer is represented by a “foreign key” field.

The deposition model is derived from Deposition, which in turn is a Process:

class FiveChamberDeposition(samples.models.Deposition):
class Meta(samples.models.PhysicalProcess.Meta):

permissions = generate_permissions(
{"add", "change", "view_every", "edit_permissions"}, "FiveChamberDeposition")

It contains a full set of permissions to limit “add” and “edit” access to certain users. Moreover the view_every makes
a lab notebook possible. See Model permissions for further information.

In contrast, the layer model is derived from Layer, which in turn is an ordinary Django model (not a Process):

class FiveChamberLayer(samples.models.Layer):

class Layer(models.TextChoices):
…

class Chamber(models.TextChoices):
…

deposition = models.ForeignKey(FiveChamberDeposition, models.CASCADE,
related_name="layers", verbose_name=_("deposition"))

layer_type = models.CharField(
_("layer type"), max_length=2, choices=Layer.choices, blank=True)

chamber = models.CharField(_("chamber"), max_length=2, choices=Chamber.choices)
sih4 = model_fields.DecimalQuantityField(

"SiH4", max_digits=7, decimal_places=3, unit="sccm", null=True, blank=True)

(continues on next page)

28 Chapter 4. Programming

JuliaBase, Release 1.0

(continued from previous page)
h2 = model_fields.DecimalQuantityField(

"H₂", max_digits=7, decimal_places=3, unit="sccm", null=True, blank=True)
temperature_1 = model_fields.DecimalQuantityField(

_("temperature 1"), max_digits=7, decimal_places=3, unit="℃", null=True, blank=True)
temperature_2 = model_fields.DecimalQuantityField(

_("temperature 2"), max_digits=7, decimal_places=3, unit="℃", null=True, blank=True)

class Meta(samples.models.Layer.Meta):
unique_together = ("deposition", "number")

The most important thing here is the deposition field which points to the deposition this layer belongs to. It forms
part of a unique_together declaration. The other fields are ordinary data fields.

4.4.2 Populating user context

In order to enable users to duplicate existing depositions, you should override get_context_for_user() method
in the deposition model:

def get_context_for_user(self, user, old_context):
context = old_context.copy()
if permissions.has_permission_to_add_physical_process(user, self.__class__):

context["duplicate_url"] = "{0}?copy_from={1}".format(
django.urls.reverse("add_five_chamber_deposition"),
urlquote_plus(self.number))

else:
context["duplicate_url"] = None

return super().get_context_for_user(user, context)

This method is used when the HTML for a process (in this case a deposition) is created. Its return value is a dictionary
which is combined with the dictionary sent to the show_process_class.html template. This way, additional
program logic can be used to generate the HTML. In case of depositions, a “duplicate” button can be added, depending
on the user’s permissions.

4.4.3 The view

In the view module which must be called five_chamber_deposition.py, the main form gets additional cleaning
methods:

class DepositionForm(samples.utils.views.DepositionForm):

class Meta:
model = institute.models.FiveChamberDeposition
fields = "__all__"

def clean_number(self):
number = super().clean_number()
return form_utils.clean_deposition_number_field(number, "S")

def clean(self):
cleaned_data = super().clean()
if "number" in cleaned_data and "timestamp" in cleaned_data:

if cleaned_data["number"][:2] != cleaned_data["timestamp"].strftime("%y"):
self.add_error("number", ValidationError(

_("The first two digits must match the year of the deposition."),
code="invalid"))

return cleaned_data

The view class must override get_next_id() because the ID of a deposition (its number) is non-numberical in the
INM:

class EditView(RemoveFromMySamplesMixin, DepositionView):
form_class = DepositionForm
layer_form_class = LayerForm

(continues on next page)

4.4. A more complex example: Writing a deposition module 29

JuliaBase, Release 1.0

(continued from previous page)
def get_next_id(self):

return institute.utils.base.get_next_deposition_number("S")

4.4.4 The lab notebook

There are two things to set up for electronic lab notebooks: The URL and the template.

Adding the URL for depositions is trivial as the method samples.utils.urls.PatternGenerator.
deposition() by default also creates a lab notebook URL:

pattern_generator.deposition("FiveChamberDeposition", "5-chamber_depositions")

For normal processes, you need to request the lab notebook URL explicitly:

pattern_generator.physical_process("ConductivityMeasurement",
views={"add", "edit", "lab_notebook"})

Finally, you need to create a template called lab_notebook_process_class.html. It contains the processes to
be displayed in a lab notebook table in the context variable processes.

4.5 Process glossary

process
Anything that contains information about a sample. This can be a process in the literal meaning of the word, i.e.
a deposition, an etching, a clean room process etc. It can also be a measurement or a result. However, even the
substrate, sample split, and sample death are considered processes in JuliaBase.

It may have been better to call this “history item” or just “item” instead of “process”. The name “process” is due
to merely historical reasons, but there we go.

measurement
A special kind of process which contains a single measurement. It belongs to the class of physical processes.

physical process
A deposition or a measurement process. Its speciality is that only people with the right permission for a certain
physical process are allowed to add and edit physical processes.

result
A result – or result process, as it is sometimes called in the source code – is a special process which contains only
a remark, a picture, or a table with result values.

30 Chapter 4. Programming

CHAPTER

FIVE

MODEL PERMISSIONS

Permissions defined in the Meta class of models are used in Django to define user permissions connected with this model.
JuliaBase also makes use of this permissions framework. There are, however, some peculiarities to be taken into account
when defining model permissions for JuliaBase model classes.

5.1 Semantics and conventions

For models derived from PhysicalProcess, there are four permissions with a special meaning to JuliaBase. Their
codenames must follow the following naming conventions so that they have effect.

add_classname
Means that a user is allowed to add new processes, and to edit unfinished processes.

edit_permissions_for_classname
Means that a user is allowed to edit the permissions of other users for this process class.

view_every_classname
Means that a user is allowed to view all processes. In particular, such users are allowed to read the lab notebook.

change_classname
Means that a user is allowed to edit all processes.

Further rules:

• classname must be given in lowercase letters without underscores.

• If a user has the permission add_classname, this user can edit processes he/she is the operator of.

• You can view processes of samples that you can view.

• For obvious reasons, the edit_permissions_for_classname permission implies all the others. Usually,
the users in charge of this setup or apparatus have this permission.

5.1.1 Example

The following code snipped defines the permissions for the ClusterToolDeposition:

class Meta(samples.models.PhysicalProcess.Meta):
permissions = (("add_clustertooldeposition", "Can add cluster tool depositions"),

("edit_permissions_for_clustertooldeposition",
"Can edit perms for cluster tool I depositions"),
("view_every_clustertooldeposition",
"Can view all cluster tool depositions"),
("change_clustertooldeposition",
"Can edit all cluster tool depositions"))

Using jb_common.utils.base.generate_permissions(), this can be heavily simplified:

31

JuliaBase, Release 1.0

class Meta(samples.models.PhysicalProcess.Meta):
permissions = generate_permissions(

{"add", "change", "view_every", "edit_permissions"}, "ClusterToolDeposition")

5.2 Omitting permissions

Youmay define all four permissions above. However, if you omit some of them, this has influence on JuliaBase’s treatment
of that process class. The obvious effect of omitting a permission is that no user can have that permission. But there are
also more subtle effects.

If you omit the add_... permission, every user is allowed to add such a process. This may be suitable for things like
specimen tempering, etching, or thickness measurements that are not bound to a specific apparatus.

If you omit the edit_permissions_for_... permission, the process class will not appear in the “Permissions to
processes” page. Moreover, no email is sent to a person in charge of the setup if a user creates his/her very first process
of that kind.

5.3 Django’s default permissions

By default, Django generates an add_..., change_..., and delete_... permission for every model. You can
switch it off for a certain model by saying

class Meta:
default_permissions = ()

For physical processes, this has been done already— this is the reason why we derived our Meta class from samples.
models.PhysicalProcess.Meta in the above Example.

We recommend you to switch off Django’s default permissions globally for your project. This way, it’s much easier to
control which permissions exist for a certain model. You switch them off by saying in your manage.py:

import django.contrib.auth.management
django.contrib.auth.management._get_builtin_permissions = lambda opts: []

32 Chapter 5. Model permissions

CHAPTER

SIX

CLASS-BASED VIEWS

Class-based views are highly practical for the add/edit view of physical processes because they keep code duplication at
a minimum. In some cases, you get away with only a few lines of code. Mixin classes reduce the redundancy further.
Although it is still possible to have ordinary view functions for physical processes, we do not recommend this. If you
follow the convention of calling your view class “EditView” and place it in a module called class_name.py, the
PatternGenerator will detect it and create the URL dispatch for it.

6.1 The API

The API of JuliaBase’s class-based view classes is best described by discussing the attributes and methods of the common
base class ProcessWithoutSamplesView. Not only if you derive your views, but also if you need to define your
own abstract view class, you should derive it from one of the concrete classes presented in the next section, though,
because you probably want to re-use part of their functionality.

This class is found in the module samples.utils.views.class_views.

class ProcessWithoutSamplesView(**kwargs)
Abstract base class for the classed-based views. It deals only with the process per se, and in partuclar, with no
samples associated with this process. This is done in the concrete derived classes ProcessView (one sample)
and ProcessMultipleSamplesView (multiple samples). So, you should never instantiate this one.

The methods that you most likely want to redefine in you own concrete class are, with decreasing probability:

• is_referentially_valid()

• save_to_database()

• get_next_id()

• build_forms()

• get_title()

• get_context_data()

Note that for is_referentially_valid(), save_to_database(), build_forms(), and
get_context_data(), it is necessary to call the inherited method.

Since you connect forms with the view class, the view class expects certain constructor signatures of the forms.
As for the process model form, it must accept the logged-in user as the first argument. This is the case for Pro-
cessForm and DepositionForm, so this should not be a problem. The derived class (see below) may impose
constrains on their external forms either.

Variables

• form_class – The model form class of the process of this view.

33

JuliaBase, Release 1.0

• model – The model class of the view. If not given, it is derived from the process form class.

• class_name – The name of the model class, e.g. "clustertooldeposition".

• process – The process instance this view is about. If we are about to add a new process,
this is None until the respective form is saved.

• forms – A dictionary mapping template context names to forms, or lists of forms. Mandatory
keys in this dictionary are "process" and "edit_description". (Derived classes add
"sample", "samples", "remove_from_my_samples", "layers", etc.)

• data – The POST data if we have a POST request, or None otherwise.

• id – The ID of the process to edit, or None if we are about to add a new one. This is the
recommended way to distinguish between editing and adding.

• preset_sample – The sample with which the process should be connected by default. May
be None.

• request – The current request object. This is inherited from Django’s view classes.

• template_name – The file name of the rendering template, with the same path syntax as
in the render() function.

• identifying_field – The name of the field in the process which is the poor man’s
primary key for this process, e.g. the deposition number. It is taken from the model class.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

build_forms()

Fills the forms dictionary with the forms, or lists of them. In this base class, we only add "process"
itself and "edit_description". Note that the dictionary key is later used in the template as context
variable.

This method has no parameters and no return values, self is modified in-situ. It is good habit to check for
a key before setting it, allowing derived methods to set it themselves without doing double work.

get_context_data(**kwargs)
Generates the template context. In particular, we inject the forms and the title here into the context. This
method is part of the official Django API.

Return
the context dict

Return type
dict

get_next_id()

Gets the next identifying value for the process class. In its default implementation, it just takes the maximal
existing value and adds 1. This needs to be overridden if the identifying field is non-numeric.

Return
The next untaken of the identifying field, e.g. the next free deposition number.

Return type
object

get_title()

Creates the title of the response. This is used in the <title> tag and the <h1> tag at the top of the page.

Return
the title of the response

34 Chapter 6. Class-based views

JuliaBase, Release 1.0

Return type
str

is_all_valid()

Checks whether all forms are valid. Moreover, this method guarantees that the is_valid() method of
every form is called in order to collect all error messages.

Youmaymark any unbound form as valid for this method by setting its attribute dont_check_validity
to True. If it is not present, it is assumed to be False. This is helpful for marking unbound forms that
should not let the request fail during a POST request. An example is a form in which the user enters the
number of to-be-added sub-processes. It is reset (emptied) after each POST request by setting it to a pristine
unbound form. However, this must not prevent the view from succeeding.

Return
whether all forms are valid

Return type
bool

is_referentially_valid()

Checks whether the data of all forms is consistent with each other and with the database. This is the partner
of is_all_valid() but checks the inter-relations of data.

This method is frequently overriden in concrete view classes.

Note that a True here does not imply a True from is_all_valid(). Both methods are independent
of each other. In particular, you must check the validity of froms that you use here.

Return
whether the data submitted to the view is valid

Return type
bool

save_to_database()

Saves the data to the database.

Return
the saved process instance

Return type
samples.models.PhysicalProcess

startup()

Fetch the process to-be-edited from the database and check permissions. This method has no parameters and
no return values, self is modified in-situ.

6.2 Main classes

The following names are found in the module samples.utils.views.

class ProcessView(**kwargs)
View class for physical processes with one sample each. The HTML form for the sample is called sample in the
template. Typical usage can be very short:

from samples.utils.views import ProcessForm, ProcessView

class LayerThicknessForm(ProcessForm):
class Meta:

(continues on next page)

6.2. Main classes 35

JuliaBase, Release 1.0

(continued from previous page)
model = LayerThicknessMeasurement
fields = "__all__"

class EditView(ProcessView):
form_class = LayerThicknessForm

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class ProcessMultipleSamplesView(**kwargs)
View class for physical processes with one or more samples each. The HTML form for the sample list is called
samples in the template. The usage is analogous to ProcessView.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class DepositionView(**kwargs)

View class for views for depositions with layers. The layers of the process must always be of the same type. If they
are not, you must use DepositionMultipleTypeView instead. Additionally to form_class, you must
set the step_form_class class variable to the form class to be used for the layers.

The layer form should be a subclass of SubprocessForm.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class DepositionMultipleTypeView(**kwargs)
View class for depositions the layers of which are of different types (i.e., different models). You can see it in action
in the module institute.views.samples.cluster_tool_deposition. Additionally to the class
variable form_class, you must set:

Variables

• step_form_classes – This is a tuple of the form classes for the layers

• short_labels – (optional) This is a dict mapping a layer form class to a concise name of
that layer type. It is used in the selection widget of the add-step form.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class SubprocessForm(view, *args, **kwargs)
Model form class for subprocesses. Its only purpose is to eat up the view parameter to the constructor so that you
need not redefine the constructor every time.

class SubprocessMultipleTypesForm(view, data=None, **kwargs)
Abstract model form for all step types in a process. It is to be used in conjunction with MultipleStepType-
sMixin. See the views of th cluster-tool deposition in the INM “institute” app for an example for how to use this
class.

6.3 Mixins

class RemoveFromMySamplesMixin(**kwargs)
Mixin for views that like to offer a “Remove from my samples” button. In the template, they may add the following
code:

{{ remove_from_my_samples.as_p }}

This mixin must come before the main view class in the list of parents.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

36 Chapter 6. Class-based views

JuliaBase, Release 1.0

class SamplePositionsMixin(**kwargs)
Mixin for views that need to store the positions the samples used to have during the processing. The respective
process class must inherit from ProcessWithSamplePositions. In the edit template, you must add the
following code:

{% include "samples/edit_sample_positions.html" %}

This mixin must come before the main view class in the list of parents.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class SubprocessesMixin(**kwargs)

Mixing for views that represent processes with subprocesses. Have a look at institute.views.samples.
solarsimulator_measurement for an example. In a way, it is a light-weight variant of the Multi-
pleStepsMixin below. In contrast to that, this mixin doesn’t order its subprocesses (you still may enforce
ordering in the show template).

For this to work, you must define the following additional class variables:

• subform_class: the model form class for the subprocesses

• process_field: the name of the field of the parent process in the subprocess model

• subprocess_field: the related_name parameter in the field of the parent process in the subprocess
model

You should derive the model form class of the subprocess from SubprocessForm. This is not mandatory but
convenient, see there.

In the template, the forms of the subprocesses are available in a list called subprocesses. Furthermore, you
should include

{{ number.as_p }}

in the template so that the user can set the number of subprocesses.

This mixin must come before the main view class in the list of parents.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class MultipleStepsMixin(**kwargs)
Mixin class for views for processes with steps. The steps of the process must always be of the same type. If
they are not, you must use MultipleTypeStepsMixin instead. The step model must include a field called
“number”, which should be ordered. This mixin must come before the main view class in the list of parents.

You can see it in action in the module institute.views.samples.five_chamber_deposition.
In the associated edit template, you can also see the usage of the three additional template variables steps,
change_steps (well, at least their combination steps_and_change_steps), and add_steps.

Additionally to form_class, you must set the following class variables:

Variables

• step_form_class – the form class to be used for the steps.

• process_field – to the name of the field of the parent process in the step model.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

class MultipleStepTypesMixin(**kwargs)

Mixin class for processes the steps of which are of different types (i.e., different models). The step model must
include a field called “number”, which should be ordered. This mixin must come before the main view class in
the list of parents.

6.3. Mixins 37

JuliaBase, Release 1.0

You can see it in action in the module institute.views.samples.cluster_tool_deposition.
In the associated edit template, you can also see the usage of the three additional template variables steps,
change_steps (well, at least their combination steps_and_change_steps), and add_steps. More-
over, note the use of the step_type and type fields of each layer (= step).

Additionally to the class variable form_class, you must set:

Variables

• step_form_classes – This is a tuple of the form classes for the steps

• process_field – to the name of the field of the parent process in the step model.

• short_labels – (optional) This is a dict mapping a step form class to a concise name of
that step type. It is used in the selection widget of the add-step form.

Constructor. Called in the URLconf; can contain helpful extra keyword arguments, and other things.

6.4 Sub-processes

Quite often, there is the need to divide a process further into sub-processes. JuliaBase realises this by special mixin classes.
In this section, I discuss the bigger picture of it. Look at the reference above for the details and further information.

There are three mixins that deal with sub-processes:

• SubprocessesMixin

• MultipleStepsMixin

• MultipleStepTypesMixin

6.4.1 SubprocessesMixin

This is a lightweight solution if you just want to have the forms for sub-processes auto-generated. It lets you create an
edit/add view which allows the user to enter the number of sub-processes, and to enter the sub-processes’ data. This mixin
does not enforce any ordering of the sub-processes – you may, howvever, enforce an ordering in the show view yourself,
possibly by a model setting.

Because of the lack of user convenience, this mixin is useful particularly for edit/add views which are primarily used by
programs (e.g. crawlers) rather than by human beings. The solar simulator of the INM institute app demonstrates how
to use this mixin.

6.4.2 MultipleStepsMixin

This mixin realises the JuliaBase concept of a step. Steps are ordered sub-processes. On the model layer, they are models
not derived from Process that contain an interger field number. This field is used to define the ordering, and helps
JuliaBase to provide some convenience functionality: Re-ordering steps, duplicating them, deleting them. The parent
model, for example the deposition process class, must define a method steps() that returns a query set of all steps, as
in:

def get_steps(self):
return self.layers

The MultipleStepsMixin is the main ingredient for the class DepositionView. You can see the latter in action
in the 5-chamber deposition views of the INM institute app.

38 Chapter 6. Class-based views

JuliaBase, Release 1.0

“My steps”

Moreover with steps, your users can use something called “my steps”. It is a list of favourite steps that occur frequently.
Every step in this list has a nickname, chosen by the user. When composing a new process, the user can select from
this list instead of entering the step data manually. JuliaBase stores the “my steps” list for each user, however, you must
add a view that lets the user set this list for each process class(es) that should be supported. In JuliaBase’s example app
“institute”, a “my layers” view is included which realises this functionality for deposition layers.

6.4.3 MultipleStepTypesMixin

This mixin is the same as above, but each step may be of a different model class. Using this mixin is slightly more
complicated but also more powerful for obvious reasons. The steps must be of a common base model class, of which
the concrete model classes are derived. Consequently, the base model class must inherit from jb_common.models.
PolymorphicModel. The steps() method may return instances of the base model class, because the class-based
view already takes care of finding the actual instance.

In the viewmodel, you should derive the forms classes for your step types from SubprocessMultipleTypesForm.
This takes care of an extra field step_type that helps the view class to identify the step type from he HTTP POST
data.

This forms the basis of DepositionMultipleTypeView. You can see the latter in action in the cluster-tool depo-
sition views of the INM institute app.

6.4. Sub-processes 39

JuliaBase, Release 1.0

40 Chapter 6. Class-based views

CHAPTER

SEVEN

THE REMOTE CLIENT

The “remote client” is a programming library for contacting JuliaBase over the network. Being a library, it is not a program
per se but used by your own code for the bidirectional communication with the database. The remote client communicates
through a REST HTTP interface implemented in the JuliaBase server. This interface could be used directly, however,
the remote client makes it much easier.

In the following, we will describe what the remote client can do and how to get it running. For the API itself, we have
to refer to the documentation in the sources of the Python files in remote_client/. Note especially the examples in
remote_client/examples/.

7.1 Use cases

The remote client has many applications.

7.1.1 Crawlers

Crawlers are programs that go through a bunch of data or log files and transmit their content to the database. For example,
a measurement setup may write a data file for every measurement run. Every hour, a crawler is called, which scans for
new files. It reads the new files and uses the content to add new measurements processes to the database. This way,
new measurements automatically end up in the database. You may have more than one crawler regularly running in your
institute.

The very same crawler can also be used to import legacy data. The crawler can be programmed in such a way that during
its first run, it imports thousands of data sets of recent years, and from there on, it imports newly added data sets every
hour.

Since crawlers run unattendedly, they must be very robust. If a data file is invalid, or if the central server is temporarily
unavailable, it must gently exit and try again next time, without forgetting to add something, and without adding things
twice.

Moreover, legacy data mostly is poorly structured and organized. If you think your data is the exception, think again.
During writing the crawler, you will be surprised how many odd ideas and mistakes your colleagues are capable of.

Be that as it may, crawlers are the primary use case for the remote client. The remote client contains functions especially
for making writing them as easy as possible.

41

JuliaBase, Release 1.0

7.1.2 Connecting the setup with the database

A more direct way than the crawler for bringing processing and measurement data into the database, albeit not always
feasible, is to extend the control program of the experimental setup. For this, you must have access to the source code of
the control program. Then, you can use the remote client for writing new runs immediately into the database.

However, the communication needn’t be one-way. You can also use the remote client to authenticate the user, to check
whether he or she is allowed to use this setup, and to check whether the sample names belong to valid and for the user
accessible samples.

The remote client is written in Python, however, it is easy to use it from programs written in other programming languages,
and JuliaBase ships with bindings to Delphi, LabVIEW, and Visual Basic.

7.1.3 Data mining and analysis

Everyone with browser access to the JuliaBase database can use the remote client for accessing, too. The permissions
will be the same in both cases, of course. This can be used by researchers capable of programming to get data from the
database and do something with it, e.g. creating statistics or evaluating raw data.

Imagine the following: A researcher makes many sample series and measures their temperature-dependent conductivity.
The researcher can write a program that extracts the names of the raw data files from the database, then creates a plot for
each sample series with the conductivity curves of all samples of that series, and writes these plots back to the database.
There, one can see them on the series’ pages, and in every sample’s data sheet.

7.2 Extending the remote client

As for JuliaBase itself, also the remote client should be extended with the functionality special to your institution. This
is not absolutely necessary, but without it, you can only use the very basic functionality. However, extending the remote
client is much easier than extending JuliaBase.

In JuliaBases’ source code, the default remote client resides in the directory remote_client/, and it has the following
structure:

remote_client/
jb_remote_inm.py
jb_remote/

__init__.py
common.py
samples.py
settings.py
...

Replace the file jb_remote_inm.py with your own institute’s code, and give your file a name derived from your
institution’s name. Your file should start with something like:

from jb_remote import *

settings.ROOT_URL = settings.TESTSERVER_ROOT_URL = "https://juliabase.my-institute.edu/"

From there on, you are totally free how to program your incarnation of the remote client. You may use
jb_remote_inm.py as a source of inspiration, of course.

42 Chapter 7. The remote client

JuliaBase, Release 1.0

7.2.1 Settings

The following settings in the remote client are available and should be set in your jb_remote_inm.py:

ROOT_URL
The URL of the production server. It must end in a slash. Default: None

TESTSERVER_ROOT_URL
The URL of the test server. It must end in a slash. Default: "https://demo.juliabase.org/"

SMTP_SERVER
The DNS name of the SMTP server used for outgoing mail. It may be used in crawlers to send success or error
emails. You may add a port number after a colon. Default: "mailrelay.example.com:587"

SMTP_LOGIN
The login name of the SMTP server. If empty, no login is performed. If not empty, TLS is used. Default:
"username"

SMTP_PASSWORD
The password used to login to the SMTP server through TLS. Default: "password"

EMAIL_FROM
The sender used for outgoing mails. Default: "me@example.com"

EMAIL_TO
The recipient of outgoing mails. Default: "admins@example.com"

7.3 Local installation and usage

Once you finished extending the default remote client, your remote client consists of the files listed above, with
jb_remote_inm.py substituted by your file called, say, jb_remote_my_institute.py. This set of files needs
to be copied to the machines where the remote client is supposed to be used, and the top directory (the one with your
jb_remote_my_institute.py) should be in PYTHONPATH.

Then, you use the remote client with a Python script as easy as this:

from jb_remote_my_institute import *

setup_logging("console")
login("juliabase", "12345")

sample = Sample("14-JS-1")
sample.current_location = "Sean's office"
sample.edit_description = "location changed"
sample.submit()

logout()

By the way, the files are organized in a way that you can update very conveniently: If a new version of JuliaBase is
released, you simply have to replace the jb_remote/ subdirectory with the new one.

7.3. Local installation and usage 43

JuliaBase, Release 1.0

7.4 Classes and functions

As explained in Extending the remote client, the following names become available by saying

from jb_remote import *

connection

The connection to the database server. It is of the type JuliaBaseConnection.

primary_keys

A dict-like object of type PrimaryKeys that is a mapping of identifying keys to IDs. Possible keys are:

"users"
mapping user names to user IDs.

"external_operators"
mapping external operator names to external operator IDs.

"topics"
mapping topic names to topic IDs.

class JuliaBaseConnection

Class for the routines that connect to the database at HTTP level. This is a singleton class, and its only instance
resides at top-level in this module.

open(relative_url, data=None, response_is_json=True)
Do an HTTP request with the JuliaBase server. If data is not None, its a POST request, and GET otherwise.

Parameters

• relative_url (str) – the non-domain part of the URL, for example "/samples/
10-TB-1". “Relative” may be misguiding here: only the domain is omitted.

• data (dict mapping str to str, int, float, bool, file, or list)
– the POST data, or None if it’s supposed to be a GET request.

• response_is_json (bool) – whether the content type of the response must be JSON

Returns
the response to the request

Return type
object

Raises

• JuliaBaseError – if JuliaBase couldn’t fulfill the request because it contained errors.
For example, you requested a sample that doesn’t exist, or the transmitted measurement data
was incomplete.

• urllib.error.URLError – if a lower-level error occured, e.g. the HTTP connection
couldn’t be established.

exception JuliaBaseError(error_code, message)
Exception class for high-level JuliaBase errors.

Variables

• error_code – The numerical error code. See jb_common.utils for further informa-
tion, and the root __init__.py file of the various JuliaBase apps for the tables with the
error codes.

44 Chapter 7. The remote client

JuliaBase, Release 1.0

• error_message – A description of the error. If error_code is 1, it contains the URL
to the error page (without the domain name).

class PrimaryKeys

Dictionary-like class for storing primary keys. I use this class only to delay the costly loading of the primary keys
until they are really accessed. This way, GET-request-only usage of the Remote Client becomes faster. It is a
singleton.

Variables
components – set of types of primary keys that should be fetched. For example, it may contain
"external_operators=*" if all external operator’s primary keys should be fetched. The
modules the are part of jb_remote are supposed to populate this attribute in top-level module
code.

as_json(value)

Prints the value in JSON fromat to standard output. This routine comes in handy if Python is called from another
program which parses the standard output. Then, you can say

as_json(User("r.calvert").permissions)

and the calling program (written e.g. in Delphi or LabVIEW) just has to convert JSON into its own data structures.

Parameters
value (object (an arbitrary Python object)) – the data to be printed as JSON.

double_urlquote(string)
Returns a double-percent-quoted string. This mimics the behaviour of Django, which quotes every URL retrieved
by django.urls.resolve. Because it does not quote the slash “/” for obvious reasons, I have to quote sample
names, sample series names, deposition numbers, and non-int process “identifying fields” before they are fed into
resolve (and quoted again).

format_timestamp(timestamp)
Serializses a timestamp. This is the counter function to parse_timestamp, however, there is an asymmetry:
Here, we don’t generate ISO 8601 timestamps (with the "T" inbetween). The reason is that Django’s Date-
TimeField would not be able to parse it. But see <https://code.djangoproject.com/ticket/11385>.

Parameters
timestamp (datetime.datetime) – the timestamp to format

Returns
the timestamp in the format “YYYY-MM-DD HH:MM:SS”.

Return type
str

login(username, password, testserver=False)
Logins to JuliaBase.

Parameters

• username (str) – the username used to log in

• password (str) – the user’s password

• testserver (bool) – whether the testserver should be user. If False, the production
server is used.

logout()

Logs out of JuliaBase.

7.4. Classes and functions 45

https://code.djangoproject.com/ticket/11385

JuliaBase, Release 1.0

parse_timestamp(timestamp)
Convert a timestamp coming from the server to a Python datetime object. The server serialises with the Djan-
goJSONEncoder, which in turn uses the .isoformat()method. Note that the timestamp must use the UTC
timezone (Z for zulu), which seems to be always the case for non-template responses (at least for PostgreSQL and
SQLite).

Parameters
timestamp (str) – the timestamp to parse, coming from the server. It must have ISO 8601
format format exlicitly with the “Z” timezone.

Returns
the timestamp as a Python datetime object

Return type
datetime.datetime

sanitize_for_markdown(text)
Convert a raw string to Markdown syntax. This is used when external (legacy) strings are imported. For example,
comments found in data files must be sent through this function before being stored in the database.

Parameters
text (str) – the original string

Returns
the Markdown-ready string

Return type
str

setup_logging(destination=None, filepath=None)
Sets up the root logger. Note that it replaces the old root logger configuration fully. Client code should call this
function as early as possible.

Parameters

• destination (str) – Where to log to; possible values are:

"file"
Log to /var/lib/crawlers/jb_remote.log if /var/lib/crawlers is ex-
isting, otherwise (i.e. onWindows), log to jb_remote.log in the current directory. The
directory is configurable by the environment variable CRAWLERS_DATA_DIR. See also
the filepath parameter.

Logging is appended to that file.

It additionally enables logging to stderr, in order to be useful in containers.

"console"
Log to stderr.

None
Do not log.

• filepath (str) – Makes sense only if destination is “file”. If given, the log output is
sent to this path, and to stderr.

class Result(id_=None, with_image=True)
Class representing result processes.

Parameters

• id (int or str) – if given, the instance represents an existing result process of the database.
Note that this triggers an exception if the result ID is not found in the database.

46 Chapter 7. The remote client

JuliaBase, Release 1.0

• with_image (bool) – whether the image data should be loaded, too

submit()

Submit the result to the database.

Returns
the result process ID if succeeded.

Return type
int

class Sample(name=None, id_=None)
Class representing samples.

Parameters

• name (str) – the name of an existing sample; it is ignored if id_ is given

• id (int) – the ID of an existing sample

submit()

Submit the sample to the database.

Returns
the sample’s ID if succeeded.

Return type
int

class TemporaryMySamples(sample_ids)
Context manager for adding samples to the “My Samples” list temporarily. This is used when editing or adding
processes. In order to be able to link the process with samples, they must be on your “My Samples” list.

This context manager should be used like this:

with TemporaryMySamples(sample_ids):
...

The code at ... can safely assume that the sample_ids have been added to “My Samples”. After having
executed this code, those samples that hadn’t been on “My Samples” already are removed from “My Samples”.
This way, the “My Samples” list is unchanged eventually.

param sample_ids
the IDs of the samples that must be on the “My Samples” list; it my also be a single ID

class User(username)
Class representing a user.

Parameters
username (str) – the user’s login name

property id

Contains the user’s ID as an int.

property permissions

Contains the user’s permissions. It is a set of names of the form “app_label.codename”.

property topics

Contains the topics the user is a member of. It is a set of topic IDs. In particular, it is not their names, as they
are subject to change.

7.4. Classes and functions 47

JuliaBase, Release 1.0

48 Chapter 7. The remote client

CHAPTER

EIGHT

TALKING TO JULIABASE

You have a measurement or processing setup, and you have access to the program(s) that run this setup? This is the ideal
situation to make a direct, bi-directional connection between your experimental setup and the central JuliaBase server.
This has many benefits:

• You can assure that only people authorised for this apparatus can log in your program.

• You can assure that the header data in your data files is correct, in particular operator name and sample name.

• Each run is immediately available in the central database.

• Operators needn’t enter each run into the browser, which is inconvenient and error-prone.

• Operators can pick the affected sample(s) comfortably from a list instead of typing the sample names explicitly.

• If a run is connected with a task, this task can automatically updated.

This chapter is intended as a gentle introduction to how to realise this.

8.1 The big picture

JuliaBase is written in the Python programming language. This is also true for the Remote Client, which is a Python library
that you can install on any lab or office computer and use it to talk to the central JuliaBase server.

However, you needn’t use Python to communicate with JuliaBase. This is just the most natural way. But JuliaBase’s
source code includes bindings to Delphi, Visual Basic, and LabVIEW. Further bindings can be added very easily once
the demand is there.

Such a binding works by calling the Python interpreter in the background. This indirection causes a very slight per-
formance loss. Moreover, you need to install a Python interpreter. However, the simplicity and maintainability of this
approach make up for it.

8.2 Installation

First, make sure that Python is installed on your computer.

Then, install the remote client package (which is an adaption of the original JuliaBase client to your institute or group).
Ask your local JuliaBase guru for how to do this. Ideally, it is available in a shared directory, so that you don’t have to do
anything. You should make sure that the remote client package’s directory is in the PYTHONPATH. In the following, I
call the adapted module jb_institute_inm; your name with probably be different.

49

https://www.python.org/downloads/

JuliaBase, Release 1.0

8.3 Basic usage

The next steps differ depending on the programming language you use. The basic principle is always the same, though:
You log in on server with user name and password, execute commands that read from or write to the database, and log
out.

In all non-Python languages, however, you cannot give the commands directly. Instead, you build a string that contains
the Python commands and pass it to a special function called execute_jb or similar.

8.3.1 Python

In our example code, we read the data of sample “14-JS-1” and then change its current location:

from jb_remote_inm import *

setup_logging("file")
login("juliabase", "12345")

sample = Sample("14-JS-1")
sample.current_location = "main lab"
sample.edit_description = "location changed"
sample.submit()

logout()

8.3.2 Visual Basic

The Visual Basic binding in remote_client/visual_basic/juliabase.vb can be used like the following:

Imports System
Imports Juliabase

Public Module ModuleMain
Sub Main()

JB_Module_Name = "jb_remote_inm"

Execute_JB("juliabase", "12345",
"sample = Sample('14-JS-1');" &
"sample.current_location = 'main lab';" &
"sample.edit_description = 'location changed';" &
"sample.submit()")

End Sub
End Module

8.3.3 Delphi

For Delphi, in order to achieve the same as in the previous sections, you say

program juliabase_example;

{$APPTYPE CONSOLE}

uses
SysUtils, juliabase;

begin
jb_module_name := 'jb_remote_inm';
execute_jb('juliabase', '12345',

'sample = Sample("14-JS-1");' +
'sample.current_location = "main lab";' +
'sample.edit_description = "location changed";' +
'sample.submit()');

end.

50 Chapter 8. Talking to JuliaBase

JuliaBase, Release 1.0

The necessary unit can be found in remote_client/delphi/juliabase.pas.

8.3.4 LabVIEW

The LabVIEW virtual instrument “execute jb.vi” in remote_client/labview/juliabase.llb is very differ-
ent from the other bindings for obvious reasons, but the general method is the same: You pass login, password, and the
module name in a data structure called “settings” to the VI, and the result of the Python process is returned:

8.3.5 Getting data in non-Python languages

In the non-Python languages, you don’t have direct access to the results of the commands. Instead, you may use Python’s
print() to send data to the standard output, which in turn is the return value of the execute_jb function. Then,
you can extract the original data from this value. For example in Delphi, you may write:

topic := execute_jb('juliabase', '12345', 'print(Sample("14-JS-1").topic)');

Then, topic contains the topic of the sample. Note that topic is a string. If you need other data types, you have to
convert the result string yourself.

For more complex return values, this conversion can be cumbersome. In languages with JSON support, there is a con-
venience function defined in the remote client called as_json(). It can be used instead of print(). It prints its
argument in JSON format to standard output. The LabVIEW example above demonstrates the usage of this function in
the second VI call.

8.3.6 The test server

Your institution may provide a test server for easier developing. This way, you do not manipulate valuable data on the
production server. You choose the test server by passing testserver=True to the login() function:

login("juliabase", "12345", testserver=True)

In non-Python languages, you pass the same parameter to the execute_jb function.

8.3. Basic usage 51

http://json.org/

JuliaBase, Release 1.0

8.4 Error handling

If something goes wrong while executing the commands, an exception is raised. If it is a JuliaBase-related error, this is
a special exception class:

language exception class name error code attribute name

Python JuliaBaseError error_code
Visual Basic JuliabaseException code
Delphi EJuliaBaseError ErrorCode

Moreover, the error message is stored in the exception attribute typical of the respective language.

If the error is not JuliaBase-related (for example, a syntax error), the language-typical basic exception class is raised,
containing a proper error message.

As usual, in LabVIEW, things are slightly different. If an error occurs, it is set in the error output of the VI. Error numbers
greater than 6000 indicate JuliaBase errors. The error message contains the details.

8.4.1 Error pages in the browser

In case of JuliaBase errors, non-Python languages may open a browser automatically showing a detailed problem de-
scription. You may turn off this behaviour by setting the global variable jb_open_error_page_in_browser to
false.

8.5 About passwords

Passwords are sensitive data. Never store them on the disk. Assure that they never appear anywhere on the screen (use
the •••• display). Let the user input their password, store it in a variable, and use it to login to JuliaBase – that’s all.

8.6 How do I …

8.6.1 … check whether the user is known to JuliaBase?

You login the user with the user name and password they give and check whether this raises a JuliaBase exception with
error code 4. If it does, the user name and/or the password is wrong.

In Python:

try:
login(username, password)

except JuliaBaseError as error:
if error.error_code == 4:

print("Login and/or password is wrong!")

In Visual Basic:

Try
Execute_JB(login, password, "")

Catch e As JuliabaseException:
If e.code = 4 Then

MessageBox.Show("Login and/or password is wrong!")
End If

End Try

52 Chapter 8. Talking to JuliaBase

JuliaBase, Release 1.0

8.6.2 … check whether the user is allowed to use my setup?

You retrieve the permissions attribute of a User instance. Then, you check whether the “add” permission occurs in
this attribute.

In Python:

permissions = User(username).permissions
if "institute.add_pdsmeasurement" not in permissions:

print("You are not authorised to make PDS measurements!")

In Visual Basic:

Dim result As String
result = Execute_JB(login, password, "print(User('" & username & "').permissions)")
If result.IndexOf("'institute.add_pdsmeasurement'") = -1 Then

MessageBox.Show("You are not authorised to make PDS measurements!")
End If

8.6.3 … check whether a sample exists?

You retrieve the sample and check whether this raises an exception with error code 2. If it does, a sample with that name
was not found.

In Python:

try:
Sample(sample_name)

except JuliaBaseError as error:
if error.error_code == 2:

print("A sample with this name does not exist!")

In Visual Basic:

Try
Execute_JB(login, password, "Sample('" & sample_name & "')")

Catch e As JuliabaseException:
If e.code = 2 Then

MessageBox.Show("A sample with this name does not exist!")
End If

End Try

8.6.4 … add a new process?

You instantiate the process class, set sample ID, operator, timestamp, and the process-specific attributes, and call the
submit() method of the process instance.

In Python:

pds_measurement = PDSMeasurement()
pds_measurement.sample_id = Sample(sample_name).id
pds_measurement.operator = username
pds_measurement.timestamp = datetime.datetime.now()
pds_measurement.number = next_number
pds_measurement.apparatus = "pds1"
pds_measurement.raw_datafile = filepath
pds_measurement.submit()

In Visual Basic:

Execute_JB(login, password,
"pds_measurement = PDSMeasurement();" &
"pds_measurement.sample_id = Sample('" & sample_name & "').id;" &

(continues on next page)

8.6. How do I … 53

JuliaBase, Release 1.0

(continued from previous page)
"pds_measurement.operator = '" & login & "';" &
"pds_measurement.timestamp = '" & Format(Now, "yyyy-MM-dd HH:mm:ss") & "';" &
"pds_measurement.number = " & next_number & ";" &
"pds_measurement.apparatus = 'pds1';" &
"pds_measurement.raw_datafile = '" & filepath & "';" &
"pds_measurement.submit()")

In order to know which instance attributes you need to set and how, look for documentation in the Python remote client
module, or ask your local JuliaBase guru.

54 Chapter 8. Talking to JuliaBase

CHAPTER

NINE

SETTINGS REFERENCE

In order to have the default values for the following settings available, you must start your settings.py with:

from jb_common.settings_defaults import *
from samples.settings_defaults import *

We recommend to use the settings.py in JuliaBase’s root directory as a starting point.

9.1 General JuliaBase settings

9.1.1 ADD_SAMPLES_VIEW

Default: "" (Empty string)

Name of the view to add samples. For example:

ADD_SAMPLES_VIEW = "institute:add_samples"

This view function must have exactly one parameter, namely the request instance.

9.1.2 CACHE_ROOT

Default: "/tmp/juliabase_cache"

The path where dispensable (in the sense of re-creatable) files are stored. JuliaBase mostly uses this directory to store
images, e.g. plot files. If the path doesn’t exist when the JuliaBase service is started, it is created. The default value
should be changed to e.g. "/var/cache/juliabase". Note that such a path needs to be created by you because
Juliabase doesn’t have the necessary permissions. Also note that such a path needs to be writable by the webserver process
JuliaBase is running on.

9.1.3 CRAWLER_LOGS_ROOT

Default: "" (Empty string)

Path to the crawlers’ log files. In this directory, the log file for a particular process class is called class_name.log.
Mind the spelling: MyProcessClassName becomes my_process_class_name.log.

55

JuliaBase, Release 1.0

9.1.4 CRAWLER_LOGS_WHITELIST

Default: [] (Empty list)

List of process classes for which the crawler log is public, i.e. not restricted to users that are allowed to add new processes
of that kind.

9.1.5 DEBUG_EMAIL_REDIRECT_USERNAME

Default: "" (Empty string)

Username of a user to which all outgoing email should be sent if the Django setting DEBUG=True. If this name is
invalid, in particular if it is empty, no emails are sent at all in debugging mode. This prevents embarrassment caused by
emails sent to other people while merely debugging your code.

9.1.6 HELP_LINK_PREFIX

Default:: "http://www.juliabase.org/"

URL prefix to be prepended to all help link given in the help_link() decorator.

9.1.7 INITIALS_FORMATS

Default:

INITIALS_FORMATS = \
{"user": {"pattern": r"[A-Z]{2,4}|[A-Z]{2,3}\d|[A-Z]{2}\d{2}",

"description": _("The initials start with two uppercase letters. "
"They contain uppercase letters and digits only. "
"Digits are at the end.")},

"external_contact": {
"pattern": r"[A-Z]{4}|[A-Z]{3}\d|[A-Z]{2}\d{2}",
"description": _("The initials start with two uppercase letters. "

"They contain uppercase letters and digits only. "
"Digits are at the end. "
"The length is exactly 4 characters.")}

}

This maps the kind of initials to their properties. It must contain exactly the two keys "user" and "exter-
nal_contact". See Initials for more information.

9.1.8 JAVASCRIPT_I18N_APPS

Default: ["django.contrib.auth", "samples", "jb_common"]

List containing all apps which contain translations that should be used in JavaScript code. The apps are named as in the
Django setting INSTALLED_APPS. See the Django documentation for further information.

56 Chapter 9. Settings reference

https://docs.djangoproject.com/en/dev/topics/i18n/translation/#internationalization-in-javascript-code

JuliaBase, Release 1.0

9.1.9 MERGE_CLEANUP_FUNCTION

Default: "" (Empty string)

Name of the view in Python’s dot notation which points to a function which is called after each sample merge. This
function must take exactly two parameters, the sample that is merged and the sample that this sample is merged into. It
is possible to leave this settings empty; then, nothing special is called.

9.1.10 NAME_PREFIX_TEMPLATES

Default: [] (Empty list)

List of string templates that define possible sample name prefixes. See Sample names for more information.

9.1.11 SAMPLE_NAME_FORMATS

Default:

SAMPLE_NAME_FORMATS = {"provisional": {"possible_renames": {"default"}},
"default": {"pattern": r"[-A-Za-z_/0-9#()]*"}}

This setting defines which sample names are allowed in your database. It maps the names of the formats to their properties.
See Sample names for more information.

9.1.12 THUMBNAIL_WIDTH

Default: 400

This number represents the width in pixels of the thumbnails of plots and images that are generated for the sample data
sheet.

9.2 Settings for LDAP

9.2.1 LDAP_ACCOUNT_FILTER

Default: "(!(userAccountControl:1.2.840.113556.1.4.803:=2))"

LDAP filter for filtering LDAP members that are eligible for JuliaBase access. The default filter finds any member which
is not inactive. The default value works well for Active Directory domain controllers.

9.2.2 LDAP_ADDITIONAL_ATTRIBUTES

Default: [] (Empty list)

JuliaBase limits the attributes it receives for every user to a certain subset, e.g. the user’s real name and their department.
If your code needs additional LDAP attributes, put their names into this list. An example might be:

LDAP_ADDITIONAL_ATTRIBUTES = ["telephoneNumber", "msExchUserCulture",
"physicalDeliveryOfficeName"]

9.2. Settings for LDAP 57

JuliaBase, Release 1.0

9.2.3 LDAP_ADDITIONAL_USERS

Default: {} (Empty dict)

Dictionary mapping user names to JuliaBase department names. This contains users that are in the LDAP directory but
are not in one of the departments listed in the setting LDAP_DEPARTMENTS explained below. The use case is that some
people working in the organization but not in the department(s) may still be eligible for database access. By putting them
in LDAP_ADDITIONAL_USERS, they are allowed to login. They are associated with the department they are mapped
to.

9.2.4 LDAP_DEPARTMENTS

Default: {} (Empty dict)

Dictionary mapping LDAP department names to JuliaBase department names. If your LDAP directory data sets contain
the “department” attribute, this setting determines which department get access to JuliaBase. If this setting is empty, all
LDAP members get access.

If the LDAP doesn’t contain the “department” attribute, this setting should be empty.

9.2.5 LDAP_GROUPS_TO_PERMISSIONS

Default: {} (Empty dict)

Dictionary mapping LDAP group names to sets of Django permission names. Use the Django codename of the per-
mission, without any app label. An example might be:

LDAP_GROUPS_TO_PERMISSIONS = {
"TG_IEF-5_teamleaders": {"view_every_sample", "adopt_samples",

"edit_permissions_for_all_physical_processes",
"add_externaloperator",
"view_every_externaloperator",
"add_topic", "change_topic"}

}

Note that you should not change permissions in JuliaBase’s admin interface that occur in
LDAP_GROUPS_TO_PERMISSIONS. They will be overwritten during the next synchronization with the LDAP
directory (in particular, at next user login). Consider these permissions being managed exclusively automatically.

9.2.6 LDAP_LOGIN_TEMPLATE

Default: "{username}"

This pattern is used to bind to (a.k.a. login into) the LDAP server. JuliaBase uses this binding only to check whether the
user’s credentials (login, password) are valid. {username} is replaced by the username of the user that tries to login
into JuliaBase. A typical value for this setting is

LDAP_LOGIN_TEMPLATE = "{username}@mycompany.com"

58 Chapter 9. Settings reference

JuliaBase, Release 1.0

9.2.7 LDAP_PASSWORD

Default: None

Login password of the functional LDAP user that is used to bind to the LDAP for retrieving data. In some LDAP
configurations, anonymous binding is allowed. Then, you don’t need this setting.

9.2.8 LDAP_SEARCH_DN

Default: "" (Empty string)

The “distinguished name” (DN) which should be used as the base of the search for user details in the LDAP directory. It
is typically something like:

LDAP_SEARCH_DN = "DC=ad,DC=mycompany,DC=com"

9.2.9 LDAP_URLS

Default: [] (Empty list)

List of URLs of LDAP directories. If you want to use LDAP, this must contain at least one URL. It may contain more
if there are multiple redundant LDAP servers. In this case, JuliaBase will try each of them until it finds a working one.
An example value may be:

LDAP_URLS = ["ldaps://dc-e01.ad.mycompany.com:636"]

Here, 636 is the port number of LDAP-over-TLS. Note that in order to use TLS, youmust start theURLwithldaps://.

9.2.10 LDAP_USER

Default: None

Login name of the functional LDAP user that is used to bind to the LDAP for retrieving data. In some LDAP configura-
tions, anonymous binding is allowed. Then, you don’t need this setting. Note that LDAP_LOGIN_TEMPLATE is applied
to this name.

9.2.11 JB_LOGGING_PATH

Default: "/tmp/jb_common.log"

Path to the log file of JuliaBase. Currently, it only logs the requests with timestamps, URL, and the currently logged-in
user.

9.2. Settings for LDAP 59

JuliaBase, Release 1.0

9.3 Django settings with special meaning in JuliaBase

Note that JuliaBase does not change the meaning or the default value of Django settings.

9.3.1 LANGUAGES

This settings determines which flags to offer at the top of the screen. Since JuliaBase is available in English and German
so far, a sensible value may be:

LANGUAGES = [("de", _("German")), ("en", _("English"))]

Note that the _(...) makes the language names themselves translatable. To get this working, you must import get-
text_lazy into settings.py:

from django.utils.translation import gettext_lazy as _

9.3.2 CACHES

JuliaBase makes heavy use of Django’s cache framework. Thus, we recommend to configure an efficient caching backend
like Redis:

CACHES = {
"default": {

"BACKEND": "django.core.cache.backends.redis.RedisCache",
"LOCATION": "redis://127.0.0.1:6379",
"TIMEOUT": 3600 * 24 * 28
}

}

9.3.3 DEBUG

JuliaBase behaves slightly differently if DEBUG=True. In particular, all outgoing emails are redirected to DE-
BUG_EMAIL_REDIRECT_USERNAME.

9.3.4 DEFAULT_FROM_EMAIL

JuliaBase uses this Django setting also for its own outgoing emails.

9.3.5 INSTALLED_APPS

The minimal set of installed apps for JuliaBase is:

INSTALLED_APPS = [
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.admin",
"django.contrib.messages",
"django.contrib.staticfiles",
"institute",
"samples",
"jb_common"

]

Of course, you must replace j_institute by your own institute’s app. Furthermore, you may add as many apps as
you like, as long as the inner order is preserved.

60 Chapter 9. Settings reference

JuliaBase, Release 1.0

9.3.6 LOGIN_URL

The default URL configuration of JuliaBase puts the login view so that you should say:

LOGIN_URL = "/login"

9.3.7 LOGIN_REDIRECT_URL

JuliaBase assumes that this setting contains the home page of the database application. It is used in the default templates
if you click on the “JuliaBase” name on the top. You may simply set it to "/".

9.3.8 MIDDLEWARE

The following is a minimal set of middleware JuliaBase is working with:

MIDDLEWARE = [
"django.middleware.common.CommonMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"jb_common.middleware.MessageMiddleware",
"django.middleware.locale.LocaleMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"jb_common.middleware.LocaleMiddleware",
"samples.middleware.juliabase.ExceptionsMiddleware",

]

Note that while you may add further middleware, you must not change the inner ordering of existing middleware.

9.3.9 SECRET_KEY

Note that in the settings.py file shipped with JuliaBase, the SECRET_KEY is read from the file ~/.
juliabase_secret_key. If this file doesn’t exist, it is generated. This is good for quickly gettings things running
and not insecure per se, but you should be aware of this. In particular, nobody else should have access to it.

Of course, alternatively, you may set the SECRET_KEY in a completely different way.

A change of the secret key has the usual impact as for every Django deployment, plus that links to Atom feeds change
(with the old ones being broken).

9.3.10 TEMPLATES

JuliaBase uses Django’s template engine.

Make sure that you add "jb_common.context_processors.default" to the list of "context proces-
sors".

9.3. Django settings with special meaning in JuliaBase 61

http://stackoverflow.com/a/15383766/188108

JuliaBase, Release 1.0

DIRS

So that your can override JuliaBase’s templates with own templates, you should set in the template backend dictionary:

"DIRS": [os.path.abspath(os.path.join(os.path.dirname(__file__), "../juliabase"))]

If you don’t override BASE_DIR, you can write simply

"DIRS": [BASE_DIR]

You may add further paths, but if your project layout is structured according to Organizing your source code, this one
must be present. Then, you can extend Juliabase templates by beginning your template with e.g.

{% extends "samples/templates/samples/list_claims.html" %}

loaders

In conjunction with DIRS you must make sure that Django will look for templates first in the app directories, and then
in the filesystem. With activated template caching, this looks like

"loaders": ["django.template.loaders.cached.Loader",
("django.template.loaders.app_directories.Loader",
"django.template.loaders.filesystem.Loader")]

in the "OPTIONS" dictionary, and without caching, like:

"loaders": ["django.template.loaders.app_directories.Loader",
"django.template.loaders.filesystem.Loader"]

9.3.11 USE_TZ

You should set it to True (the default for newly created Django projects). You even must do so if your database backend
does not support timezone-aware datetimes by itself.

9.3.12 TIME_ZONE

If USE_TZ is set to True, you should also consider setting TIME_ZONE. See the Django documentation for details.

62 Chapter 9. Settings reference

https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TIME_ZONE

CHAPTER

TEN

SAMPLE NAMES

The naming scheme for samples is an important aspect of your samples database. In order to support you with that,
JuliaBase allows the definition of so-called name formats. These are string patterns that describe all valid sample names.
They are defined in settings.py like this:

SAMPLE_NAME_FORMATS = {
"provisional": {"possible_renames": {"new"}},
"old": {"pattern": r"{short_year}[A-Z]-\d{{3,4}}([-A-Za-z_/][-A-Za-z_/0-9#()]*)?",

"possible_renames": {"new"}},
"new": {"pattern": r"({short_year}-{user_initials}|{external_contact_initials})"

r"-[-A-Za-z_/0-9#()]+"}
}

In this example, three name formats are defined, namely “provisional”, “old”, and “new”. They are mapped to dictionaries
which contain their properties.

Note: There is a length limit of 30 characters for sample names. This is hard-wired in JuliaBase.

10.1 Name format properties

10.1.1 "pattern"

This is the regular expression pattern for this name format. It should match sample names of this format and only these. In
other words, every sample name should be identified unambiguously with a name format. JuliaBase appends an implicit
\Z so that the whole sample name must match.

You can use some placeholder in the pattern that are interpreted by JuliaBase to enforce additional constraints to new
sample names. These are:

{year}
the current year as a four-digit number

{short_year}
the current year as a two-digit number

{user_initials}
the initials of the currently logged-in user

{external_contact_initials}
the initials of an external contact (a.k.a. external operator) of the currently logged-in user

{combined_initials}
any of the initials above

63

https://docs.python.org/3.4/library/re.html#regular-expression-syntax

JuliaBase, Release 1.0

Because placeholders are embraced with {...}, you have to double any curly braces used in the pattern itself, as can
be seen at the {{3,4}} in the example above.

10.1.2 "possible_renames"

Default: set() (empty set)

This is a set containing all name formats into which this name format can be renamed by the user. Of course, Python code
can rename a sample to anything – although it will cause trouble if the new name is not matched by any name format.
However, this property sets limits to what the user can explicitly do. In the JuliaBase code, it affects the bulk-rename view
as well as the split-and-rename view. And you may enforce it in your own code.

10.1.3 "verbose_name"

This property contains a human-friendly name for the format name. You should enclose it with _("...") to make it
translatable.

10.2 Provisional sample names

There is a special name format in JuliaBase called “provisional”. It has a fixed pattern r"*\d{5}$" and a default
verbose name. It is used for newly created samples and usually immediately replaced by something real in the “bulk
rename” view. You should never use a provisional name outside JuliaBase, e.g. on sample boxes, in lab notebooks, or
emails! And, you should never allow renaming of any format into provisional names. In other words, one should get rid
of a provisional name as quickly as possible.

10.3 Initials

Initials are a way to generate namespaces for samples. This way, name collisions may be prevented. For example, the
probability that the researcher John Doe and the researcher Paula Poe both call their sample “sample-1” is pretty high.
However, if they put their initials somewhere in the sample name, the samples may be called “JD-sample-1” and “PP-
sample-1”; problem solved.

When it comes to choosing initials, JuliaBase follows the first come first served principle. If John Doe chooses initials
after Jane Doe has picked “JD”, he must use “JD1” or “JDOE” or whatever. They cannot be changed anymore by the
user.

Initials are at most 4 characters long. Apart from that, JuliaBase is configurable with the setting INITIALS_FORMATS. It
is a dictionary mapping "user" and "external_contact" to a properties dictionary. The allowed properties are
the following:

64 Chapter 10. Sample names

JuliaBase, Release 1.0

10.3.1 "pattern"

This is a regular expression pattern. The whole initials must match it. In contrast to SAMPLE_NAME_FORMATS, this
pattern cannot contain placeholders, and therefore, you must not double any curly brackets.

For example, if you want to restrict user initials to two or three uppercase letters, you simply add to settings.py:

INITIALS_FORMATS["user"] = {
"pattern": "[A-Z]{2,3}",
"description": _("The initials consist of two or three uppercase letters.")}

10.3.2 "description"

This is translatable string describing the pattern in a Human-friendly way. It is used for error messages.

10.4 Name prefix templates

In the bulk rename sample view (the view to which the user is redirected after having created new samples, in order
to give them a name), the user can select a name prefix, which is then prepended to every new name. This is partly for
convenience and partly for name policy enforcement. With the setting NAME_PREFIX_TEMPLATES, you can configure
this behaviour:

NAME_PREFIX_TEMPLATES = ["{short_year}-{user_initials}-", "{external_contact_initials}-"]

This example defines two prefixes. You may use the following placeholders in the templates:

{year}
the current four-digit year

{short_year}
the current two-digit year

{user_initials}
the initials of the currently logged-in user

{external_contact_initials}
the initials of any external contact of the currently logged-in user

You may also add the empty string "" as a template. Then, the user may also choose to not use any prefix, and the new
names are taken as is.

10.4. Name prefix templates 65

https://docs.python.org/3.4/library/re.html#regular-expression-syntax

JuliaBase, Release 1.0

66 Chapter 10. Sample names

CHAPTER

ELEVEN

HACKING ON JULIABASE

This unfinished chapter explains how to contribute to the JuliaBase project itself instead of adapting it to your institution.

11.1 Architecture

Since JuliaBase is based on the Django Web framework, it consists of several Django apps. The core app is called
“jb_common”. It provides functionality which is essential for all JuliaBase components. On top of that, the app “samples”
contains all features of a samples database. However, it does not contain institute-specific code in order to remain generic
and flexible. This institute-specific code resides in an app of its own and must be created by a skilled programmer.

JuliaBase is shipped together with an example institute app called “inm”. It provides not only a demo for JuliaBase, it
also is a good starting point for your own app. Besides, essential testing of JuliaBase can only be done on top of inm.

11.2 Coding guidelines

JuliaBase source code modules should not exceed 1000 lines of code. You should stick to PEP 8 and the Django coding
guidelines. String literals are double-quoted unless double quotes appear in them:

"This is a string literal"
'This is "another" string literal'

Never use u in front of a string literal. Instead, JuliaBase code uses the unicode_literals future import.

JuliaBase makes one exception from PEP 8: It allows lines with 125 columns instead of only 80.

All variables and source code comments should be in English.

Note: I skip all docstrings in the code examples in this document because otherwise, the examples would be too bloated.
However, write rich Docstrings for all non-trivial functions and methods. Write them in ReST format.

Internationalization is a very important point in JuliaBase. All strings exposed to the user should be marked as translatable
by putting them in _("...") unless you have very good reason not to do so (e.g. for some proper names). Note that in
code which is executed at module load time (e.g. model and form fields), _ should stand for gettext_lazy, whereas
within functions and methods which are executed on each request, it should be gettext. You may achieve this by
setting _ to gettext_lazy at the beginning of the module, and to gettext at the end.

67

http://www.python.org/dev/peps/pep-0008/
http://docs.djangoproject.com/en/dev/internals/contributing/?from=olddocs#coding-style
http://docs.djangoproject.com/en/dev/internals/contributing/?from=olddocs#coding-style
http://sphinx-doc.org/rest.html

JuliaBase, Release 1.0

11.2.1 Boilerplate code

Start every file with:

#!/usr/bin/env python3
#
{Licence}

"""{Module docstring}
"""

{Python standard library imports}
{Non-standard imports (Numpy, Scipy, matplotlib etc)
{Django imports}
{JuliaBase imports}

68 Chapter 11. Hacking on JuliaBase

CHAPTER

TWELVE

UTILITIES

In the following sections, the most important functions, classes, and exception classes are mentioned and explained. This
covers everything that is used in the “institute” app. It should give you a solid starting point for creating an own institute
app. Nevertheless, the utility modules contain even more functions and classes.

12.1 Common helpers

12.1.1 String-related

The following names are found in the module jb_common.utils.base.

format_enumeration(items)
Generates a pretty-printed enumeration of all given names. For example, if the list contains ["a", "b", "c"],
it yields "a, b, and c".

Parameters
items (iterable of str) – iterable of names to be put into the enumeration

Returns
human-friendly enumeration of all names

Return type
str

camel_case_to_underscores(name)
Converts a CamelCase identifier to one using underscores. For example, "MySamples" is converted to
"my_samples", and "PDSMeasurement" to "pds_measurement".

Parameters
name (str) – the camel-cased identifier

Returns
the identifier in underscore notation

Return type
str

camel_case_to_human_text(name)
Converts a CamelCase identifier to one intended to be read by humans. For example, "MySamples" is converted
to "my samples", and "PDSMeasurement" to "PDS measurement".

Parameters
name (str) – the camel-cased identifier

69

JuliaBase, Release 1.0

Returns
the pretty-printed identifier

Return type
str

12.1.2 File-related

The following names are found in the module jb_common.utils.base.

find_file_in_directory(filename, path, max_depth=None)
Searches for a file in a directory recursively to a given depth.

Parameters

• filename (str) – The file to be searched for. Only the basename is required.

• path (str) – The path from the top level directory where the searching starts.

• max_depth (int) – The maximum recursion depth; if None, there is no limit.

Returns
The relative path to the searched file, or None if not found.

Return type
str

check_filepath(filepath, default_root, allowed_roots=frozenset({}), may_be_directory=False)
Test whether a certain file is openable by JuliaBase.

Parameters

• filepath (str) – Path to the file to be tested. This may be absolute or relative. If empty,
this function does nothing.

• default_root (str) – If filepath is relative, this path is prepended to it.

• allowed_roots (iterable of str) – All absolute root paths where filepath is
allowed. default_root is implicitly added to it.

• may_be_directory (bool) – if True, filepath may be a readable directory

Returns
the normalised filepath

Return type
str

Raises
ValidationError – if the text contained forbidden syntax elements.

is_update_necessary(destination, source_files=[], timestamps=[], additional_inaccuracy=0)
Returns whether the destination file needs to be re-created from the sources. It bases of the timestamps of last file
modification. If the union of source_files and timestamps is empty, the function returns False.

Parameters

• destination (Path) – the absolute path to the destination file

• source_files (list of str or list of Path) – the paths of the source files;
if strings and not Path objects, they are assumed to be in the blob storage.

70 Chapter 12. Utilities

JuliaBase, Release 1.0

• timestamps (list of datetime.datetime) – timestamps of non-file source ob-
jects

• additional_inaccuracy (int or float) –When comparing file timestamps across
computers, there may be trouble due to inaccurate clocks or filesystems where the modification
timestamps have an accuracy of only 2 seconds (some Windows FS’es). Set this parameter to
a positive number to avoid this. Note that usually, JuliaBase copies existing timestamps, so
inaccurate clocks should not be a problem.

Returns
whether the destination file needs to be updated

Return type
bool

Raises
OSError – if one of the source paths is not found

remove_file(path)
Removes the file. If the file didn’t exist, this is a no-op.

Parameters
path (str) – absolute path to the file to be removed

Returns
whether the file was removed; if False, it hadn’t existed

Return type
bool

mkdirs(path)
Creates a directory and all of its parents if necessary. The given path is interpreted as a filename, i.e. its parent
directory is created. If the directory already exists, nothing is done. (In particular, no exception is raised.)

Parameters
path (Path) – absolute path to a file the directory of which should be created

12.1.3 Generating responses

The following names are found in the module jb_common.utils.base.

exception JSONRequestException(error_number, error_message)
Exception which is raised if a JSON response was requested and an error in the submitted data occured. This
will result in an HTTP 422 response with a JSON-encoded (error code, error message) body. For
example, in a JSON-only view function, you might say:

if not request.user.is_superuser:
raise JSONRequestException(6, "Only admins can access this ressource.")

The ranges for the error codes are:

0–999
special codes, codes common to all applications, and JuliaBase-common

1000–1999
JuliaBase-samples

2000–2999
institute-specific extensions to JuliaBase-samples

12.1. Common helpers 71

JuliaBase, Release 1.0

3000–3999
JuliaBase-kicker

The complete table with the error codes is in the main __init__.py of the respective app.

is_json_requested(request)
Tests whether the current request should be answered in JSON format instead of HTML. Typically this means that
the request was made by the JuliaBase Remote Client or by JavaScript code.

Parameters
request (HttpRequest) – the current HTTP Request object

Returns
whether the request should be answered in JSON

Return type
bool

respond_in_json(value)

The communication with the JuliaBase Remote Client or to AJAX clients should be done without generating HTML
pages in order to have better performance. Thus, all responses are Python objects, serialised in JSON notation.

The views that can be accessed by the Remote Client/AJAX as well as normal browsers should distinguish between
both by using is_json_requested.

Parameters
value (object (an arbitrary Python object)) – the data to be sent back to the client that re-
quested JSON.

Returns
the HTTP response object

Return type
HttpResponse

static_response(stream, served_filename=None, content_type=None)
Serves a bytes string as static content.

Parameters

• stream (file-like object) – the content to be served

• served_filename (str) – the filename the should be transmitted; if given, the response
will be an “attachment”

• content_type (str) – the MIME type of the content

Returns
the HTTP response with the static file

Rype
django.http.HttpResponse

The following name is found in the module samples.utils.views.

successful_response(request, success_report=None, view=None, kwargs={}, query_string='', forced=False,
json_response=True)

After a POST request was successfully processed, there is typically a redirect to another page – maybe the main
menu, or the page from where the add/edit request was started.

The latter is appended to the URL as a query string with the next key, e.g.:

72 Chapter 12. Utilities

JuliaBase, Release 1.0

/juliabase/5-chamber_deposition/08S-410/edit/?next=/juliabase/samples/08S-410a

This routine generated the proper HttpResponse object that contains the redirection. It always has HTTP status
code 303 (“see other”).

If the request came from the JuliaBase Remote Client, the response is a pickled json_response. (Normally,
a simple True.)

Parameters

• request (HttpRequest) – the current HTTP request

• success_report (str) – an optional short success message reported to the user on the
next view

• view (str) – the view name to redirect to; defaults to the main menu page (same when None
is given)

• kwargs (dict) – group parameters in the URL pattern that have to be filled

• query_string (str) – the quoted query string to be appended, without the leading "?"

• forced (bool) – If True, go to view even if a “next” URL is available. Defaults to
False. See bulk_rename.bulk_rename for using this option to generate some sort of
nested forwarding.

• json_response (object) – object which is to be sent as a pickled response to the remote
client; defaults to True.

Returns
the HTTP response object to be returned to the view’s caller

Return type
HttpResponse

12.1.4 Sample-related

The following names are found in the module samples.utils.views.

dead_samples(samples, timestamp)
Determine all samples from samples which are already dead at the given timestamp.

Parameters

• samples (list of samples.models.Sample) – the samples to be tested

• timestamp (datetime.datetime) – the timestamp for which the dead samples should
be found

Returns
set of all samples which are dead at timestamp

Return type
set of samples.models.Sample

lookup_sample(sample_name, user, with_clearance=False)
Looks up the sample_name in the database (also among the aliases), and returns that sample if it was found and
the current user is allowed to view it. Shortened provisional names like “*2” are also found. If nothing is found or
the permissions are not sufficient, it raises an exception.

Parameters

12.1. Common helpers 73

JuliaBase, Release 1.0

• sample_name (str) – name of the sample

• user (django.contrib.auth.models.User) – the currently logged-in user

• with_clearance (bool) – whether also clearances should be serached for and returned

Returns
the single found sample; or the sample and the clearance instance if this is necessary to view the
sample and with_clearance=True

Return type
samples.models.Sample or samples.models.Sample, samples.models.
Clearance

Raises

• Http404 – if the sample name could not be found

• AmbiguityException – if more than one matching alias was found

• samples.permissions.PermissionError – if the user is not allowed to view the
sample

remove_samples_from_my_samples(samples, user)
Remove the given samples from the user’s MySamples list

Parameters

• samples (list of samples.models.Sample) – the samples to be removed.

• user (django.contrib.auth.models.User) – the user whose MySamples list is
affected

extract_preset_sample(request)
Extract a sample from a query string. All physical processes as well as result processes may have an optional
parameter in the query string, namely the sample to which they should be applied (results even a sample series,
too). If such a parameter is present, the given sample – if existing – must be added to the list of selectable samples,
and it must be the initially marked sample.

This routine is used in all views for creating physical processes. It is not used for result processes because they need
a given sample series, too, and this would have been over-generalisation.

This routine extracts the sample name from the query string and returns the sample. If nothing was given or the
sample non-existing, it returns None.

Parameters
request (HttpRequest) – the current HTTP Request object

Returns
the sample given in the query string, if any

Return type
samples.models.Sample or NoneType

restricted_samples_query(user)
Returns a QuerySet which is restricted to samples the names of which the given user is allowed to see. Note that
this doesn’t mean that the user is allowed to see all of the samples themselves necessarily. It is only about the names.
See the samples.views.sample.search() view for further information.

Parameters
user (django.contrib.auth.models.User) – the user for which the allowed samples
should be retrieved

74 Chapter 12. Utilities

JuliaBase, Release 1.0

Returns
a queryset with all samples the names of which the user is allowed to know

Return type
QuerySet

The following names are found in the module samples.utils.sample_names.

get_sample(sample_name)
Lookup a sample by name. You may also give an alias. If more than one sample is found (can only happen via
aliases), it returns a list. Matching is exact.

Parameters
sample_name (str) – the name or alias of the sample

Returns
the found sample. If more than one sample was found, a list of them. If none was found, None.

Return type
samples.models.Sample, list of samples.models.Sample, or NoneType

does_sample_exist(sample_name)
Returns True if the sample name exists in the database.

Parameters
sample_name (str) – the name or alias of the sample

Returns
whether a sample with this name exists

Return type
bool

normalize_sample_name(sample_name)
Returns the current name of the sample.

Parameters
sample_name (str) – the name or alias of the sample

Returns
The current name of the sample. This is only different from the input if you gave an alias.

Return type
str

The following names are found in the module samples.utils.sample_name_formats.

verbose_sample_name_format(name_format)
Returns the human-friendly, translatable name of the sample name format. In English, it is in singular, and usable
as an attribute to a noun. In non-English language, you should choose something equivalent for the translation.

Parameters
name_format (str) – The name format

Returns
The verbose human-friendly name of this sample name format.

Return type
str

sample_name_format(name, with_match_object=False)
Determines which sample name format the given name has. It doesn’t test whether the sample name is existing,
nor if the initials are valid.

12.1. Common helpers 75

JuliaBase, Release 1.0

Parameters
name (str) – the sample name

Returns
The name of the sample name format and the respective match object. The latter can be used to
extract groups, for exampe. None if the name had no valid format.

Return type
(str, re.MatchObject) or NoneType.

12.1.5 Miscellaneous

The following names are found in the module samples.utils.views.

convert_id_to_int(process_id)

If the user gives a process ID via the browser, it must be converted to an integer because this is what’s stored in
the database. (Well, actually SQL gives a string, too, but that’s beside the point.) This routine converts it to a real
integer and tests also for validity (not for availability in the database).

Parameters
process_id (str) – the pristine process ID as given via the URL by the user

Returns
the process ID as an integer number

Return type
int

Raises
Http404 – if the process_id didn’t represent an integer number.

table_export(request, data, label_column_heading)
Helper function which does almost all work needed for a CSV table export view. This is not a view per se, however,
it is called by views, which have to do almost nothing anymore by themselves. See for example sample.export.

This function return the data in JSON format if this is requested by the Accept header field in the HTTP request.

Parameters

• request (HttpRequest) – the current HTTP Request object

• data (samples.data_tree.DataNode) – the root node of the data tree

• label_column_heading (str) – Description of the very first column with the table row
headings, see generate_table_rows.

Returns
the HTTP response object or a tuple with all needed forms to create the export view

Return type
HttpResponse or tuple of django.forms.Form

The following names are found in the module jb_common.utils.base.

get_really_full_name(user)

Unfortunately, Django’s get_full_name method for users returns the empty string if the user has no first and
surname set. However, it’d be sensible to use the login name as a fallback then. This is realised here.

Parameters
user (django.contrib.auth.models.User) – the user instance

76 Chapter 12. Utilities

JuliaBase, Release 1.0

Returns
The full, human-friendly name of the user

Return type
str

check_markdown(text)

Checks whether the Markdown input by the user contains only permitted syntax elements. I forbid images and
headings so far.

Parameters
text – the Markdown input to be checked

Raises
ValidationError – if the text contained forbidden syntax elements.

help_link(link)
Function decorator for views functions to set a help link for the view. The help link is embedded into the top line
in the layout, see the template base.html. The default template jb_base.html prepends "http://www.
juliabase.org/". But you may change that by overriding the help_link block in your own jb_base.
html.

Parameters
link (str) – the relative URL to the help page.

send_email(subject, content, recipients, format_dict=None)
Sends one email to a user. Both subject and content are translated to the recipient’s language. To make this work,
you must tag the original text with a dummy _ function in the calling content, e.g.:

_ = lambda x: x
send_mail(_("Error notification"), _("An error has occured."), user)
_ = gettext

If you need to use string formatting à la

"Hello {name}".format(name=user.name)

you must pass a dictionary like {"name": user.name} to this function. Otherwise, translating wouldn’t
work.

Parameters

• subject (str) – the subject of the email

• content (str) – the content of the email; it may contain substitution tags

• recipients – the recipients of the email

• format_dict (dict mapping str to str) – the substitions used for the format
string method for both the subject and the content

round(value, digits)
Method for rounding a numeric value to a fixed number of significant digits.

Parameters

• value (float) – the numeric value

• digit – number of significant digits

Returns
rounded value

12.1. Common helpers 77

JuliaBase, Release 1.0

Return type
str

generate_permissions(permissions, class_name)
Auto-generates model permissions. It may be used in physical process classes – but not only there – like this:

class Meta(samples.models.PhysicalProcess.Meta):
permissions = generate_permissions(

{"add", "change", "view_every", "edit_permissions"}, "ModelClassName")

Parameters

• permissions (set of str) – The permissions to generate. Possible values are "add",
"change", "view_every", and "edit_permissions".

• class_name (str) – python class name of the model class, e.g. "LayerThickness-
Measurement".

Returns
the permissions tuple

Return type
tuple of (str, str)

12.2 Feed reporting

The following name is found in the module samples.utils.views.

class Reporter(originator)
This class contains all feed-generating routines as methods. Their names start with report_.... The main
reason for putting them into a class is that this class assures that no user gets two feed entries. Therefore, if you
want to report a certain database change to the users, create an instance of Reporter and call all methods that
are related to the database change. Call the most meaningful method first, and the most general last. For example,
when changing the data of a sample, the respective view calls the following methods in this order:

report_new_responsible_person_samples
report_changed_sample_topic
report_edited_samples

Of course, the first two are only called if the respective data change really happend. Thus, the new responsible
person is signalled first, then all people about a possible topic change, and if this didn’t happen, all so-far un-
signalled users get a general message about changed sample data.

If you want to signal something to all possibly interested users, no matter on which feed entries they already have
received, just create a new instance of Reporter.

Mostly, you can call the method directly without binding the instance of Reporter to a name, as in:

feed_utils.Reporter(request.user).report_result_process(
result, edit_description=None)

Variables

• interested_users – all users that get informed with the next generated feed entry by a
call to __connect_with_users

• already_informed_users – All users who have already received a feed entry from this
instance of Reporter. They won’t get a second entry.

78 Chapter 12. Utilities

JuliaBase, Release 1.0

• originator – the user responsible for the databse change reported by the feed entry of this
instance of Reporter.

Class constructor.

Parameters
originator (django.contrib.auth.models.User) – the user who did the database
change to be reported; almost always, this is the currently logged-in user

report_changed_sample_series_topic(sample_series, old_topic, edit_description)
Generate a feed entry about a topic change for a sample series. All members of the former topic and the new
topic are informed. Note that it is possible that further things were changed in the sample series at the same
time (reponsible person, samples …). They should be mentioned in the description by the one who changed
it.

Parameters

• sample_series (list of samples.models.SampleSeries) – the sample series
that went into a new topic

• old_topic (jb_common.models.Topic) – the old topic of the samples; may be
None if they weren’t in any topic before

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the sample series (besides the change of the topic). Its keys corre-
spond to the fields of EditDescriptionForm.

report_changed_sample_topic(samples, old_topic, edit_description)
Generate a feed entry about a topic change for sample(s). All members of the former topic (if any) and the
new topic are informed. Note that it is possible that further things were changed in the sample(s) at the same
time (reponsible person, purpose …). They should be mentioned in the description by the one who changed
it.

Parameters

• samples (list of samples.models.Sample) – the samples that went into a new topic

• old_topic (jb_common.models.Topic) – the old topic of the samples; may be
None if they weren’t in any topic before

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the samples (besides the change of the topic). Its keys correspond
to the fields of EditDescriptionForm.

report_changed_topic_membership(users, topic, action)
Generate one feed entry for changed topic memberships, i.e. added or removed users in a topic.

Parameters

• users (iterable of django.contrib.auth.models.User) – the affected
users

• topic (jb_common.models.Topic) – the topic whose memberships have changed

• action (str) – what was done; "added" for added users, "removed" for removed
users

report_copied_my_samples(samples, recipient, comments)
Generate a feed entry for sample that one user has copied to another user’s “My Samples” list.

Parameters

12.2. Feed reporting 79

JuliaBase, Release 1.0

• samples (list of samples.models.Sample) – the samples that were copied to an-
other user

• recipient (django.contrib.auth.models.User) – the other user who got the
samples

• comments (str) – a message from the sender to the recipient

report_deleted_process(process)
Generate a feed entry about a deletion of a process.

Parameters
process (samples.models.Process) – the process that was deleted

report_deleted_sample(sample)
Generate a feed entry about a deletion of a sample. All users who are allowed to see the sample and who
have the sample on their “My Samples” list are informed.

Parameters
sample (samples.models.Sample) – the sample that was deleted

report_edited_sample_series(sample_series, edit_description)
Generate a feed entry about an edited of sample series. All users who have watches samples in this series are
informed, including the currently responsible person (in case that it is not the originator).

Parameters

• sample_series (list of samples.models.SampleSeries) – the sample series
that was edited

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the sample series. Its keys correspond to the fields of EditDe-
scriptionForm.

report_edited_samples(samples, edit_description)
Generate a feed entry about a general edit of sample(s). All users who are allowed to see the sample and who
have the sample on their “My Samples” list are informed.

Parameters

• samples (list of samples.models.Sample) – the samples that were edited

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the samples. Its keys correspond to the fields of EditDescrip-
tionForm.

report_new_responsible_person_sample_series(sample_series, edit_description)
Generate a feed entry for a sample series that changed their currently responsible person. This feed entry
is only sent to that new responsible person. Note that it is possible that further things were changed in the
sample series at the same time (topic, samples …). They should be mentioned in the description by the
formerly responsible person.

Parameters

• sample_series (list of samples.models.SampleSeries) – the sample series
that got a new responsible person

• edit_description (dict mapping str to object) – Dictionary containing data about
what was edited in the sample series (besides the change of the responsible person). Its keys
correspond to the fields of EditDescriptionForm.

80 Chapter 12. Utilities

JuliaBase, Release 1.0

report_new_responsible_person_samples(samples, edit_description)
Generate a feed entry for samples that changed their currently responsible person. This feed entry is only sent
to that new responsible person. Note that it is possible that further things were changed in the sample(s) at
the same time (topic, purpose …). They should be mentioned in the description by the formerly responsible
person.

Parameters

• samples (list of samples.models.Sample) – the samples that got a new responsible
person

• edit_description (dict mapping str to object) – Dictionary containing data about
what was edited in the samples (besides the change of the responsible person). Its keys
correspond to the fields of EditDescriptionForm.

report_new_sample_series(sample_series)
Generate one feed entry for a new sample series.

Parameters
sample_series (samples.models.SampleSeries) – the sample series that was
added

report_new_samples(samples)
Generate one feed entry for new samples. If more than one sample is in the given list, they are assumed to
have been generated at the same time, so they should share the same topic and purpose.

If the sample or samples are not in a topic, no feed entry is generated (because nobody listens).

Parameters
samples (list of samples.models.Sample) – the samples that were added

report_physical_process(process, edit_description=None)
Generate a feed entry for a physical process (deposition, measurement, etching etc) which was recently edited
or created. If the process is still unfinished, nothing is done.

Parameters

• process (samples.models.Process) – the process which was added/edited re-
cently

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the process. Its keys correspond to the fields of EditDescrip-
tionForm. None if the process was newly created.

report_removed_task(task)

Generate one feed for a removed task. It is called immediately before the task is actually deleted.

Parameters
task (models.Task) – the to-be-deleted task

report_result_process(result, edit_description=None)
Generate a feed entry for a result process which was recently edited or created.

Parameters

• result (samples.models.Result) – the result process which was added/edited re-
cently

• edit_description (dict mapping str to object) – The dictionary containing data
about what was edited in the result. Its keys correspond to the fields of EditDescrip-
tionForm. None if the process was newly created.

12.2. Feed reporting 81

JuliaBase, Release 1.0

report_sample_split(sample_split, sample_completely_split)
Generate a feed entry for a sample split.

Parameters

• sample_split (samples.models.SampleSplit) – sample split that is to be re-
ported

• sample_completely_split (bool) – whether the sample was completely split, i.e.
no piece of the parent sample is left

report_status_message(process_class, status_message)
Generate one feed entry for new status messages for physical processes.

Parameters

• process_class (django.contrib.contenttypes.models.
ContentType) – the content type of the physical process whose status has changed

• status_message (samples.models.StatusMessage) – the status message for
the physical process

report_task(task, edit_description=None)
Generate one feed entry for a new task or an edited task.

Parameters

• task (models.Task) – the task that was created or edited

• edit_description (dict mapping str to object or None) – The dictionary containing
data about what was edited in the task. Its keys correspond to the fields of EditDescrip-
tionForm. None if the task was newly created.

report_withdrawn_status_message(process_class, status_message)
Generate one feed entry for a withdrawn status message for physical processes.

Parameters

• process_class (django.contrib.contenttypes.models.
ContentType) – the content type of the physical process one of whose statuses
was withdrawn

• status_message (samples.models.StatusMessage) – the status message for
the physical process

12.3 Form field classes

The following names are found in the module jb_common.utils.views.

class UserField(*, choices=(), **kwargs)
Form field class for the selection of a single user. This can be the new currently responsible person for a sample,
or the person you wish to send “My Samples” to.

set_users(user, additional_user=None)
Set the user list shown in the widget. You must call this method (or set_users_without()) in the
constructor of the form in which you use this field, otherwise the selection box will remain emtpy. The
selection list will consist of all currently active users, plus the given additional user if any.

Parameters

82 Chapter 12. Utilities

JuliaBase, Release 1.0

• user (django.contrib.auth.models.User) – Thr user whowants to see the user
list

• additional_user (django.contrib.auth.models.User) – Optional addi-
tional user to be included into the list. Typically, it is the current user for the process to
be edited.

set_users_without(user, excluded_user)
Set the user list shown in the widget. You must call this method (or set_users()) in the constructor of
the form in which you use this field, otherwise the selection box will remain emtpy. The selection list will
consist of all currently active users, minus the given user.

Parameters

• user – Thr user who wants to see the user list

• excluded_user (django.contrib.auth.models.User) – User to be excluded
from the list. Typically, it is the currently logged-in user.

class MultipleUsersField(*args, **kwargs)
Form field class for the selection of zero or more users. This can be the set of members for a particular topic.

set_users(user, additional_users=[])
Set the user list shown in the widget. You must call this method in the constructor of the form in which you
use this field, otherwise the selection box will remain emtpy. The selection list will consist of all currently
active users, plus the given additional users if any.

Parameters

• user – Thr user who wants to see the user list

• additional_users (iterable of django.contrib.auth.models.
User) – Optional additional users to be included into the list. Typically, it is the current
users for the topic whose memberships are to be changed.

class TopicField(*, choices=(), **kwargs)
Form field class for the selection of a single topic. This can be the topic for a sample or a sample series, for example.

set_topics(user, additional_topic=None)
Set the topic list shown in the widget. You must call this method in the constructor of the form in which you
use this field, otherwise the selection box will remain emtpy. The selection list will consist of all currently
active topics, plus the given additional topic if any. The “currently active topics” are all topics with at least
one active user amongst its members.

Parameters

• user (django.contrib.auth.models.User) – the currently logged-in user

• additional_topic (jb_common.models.Topic) – Optional additional topic to
be included into the list. Typically, it is the current topic of the sample, for example.

12.3. Form field classes 83

JuliaBase, Release 1.0

12.4 Form classes

The following names are found in the module samples.utils.views.

class ProcessForm(user, *args, **kwargs)
Abstract model form class for processes. It ensures that timestamps are not in the future, and that comments contain
only allowed Markdown syntax.

Moreover, it defines a field “combined_operator” of the type OperatorField. In the HTML template, you
should offer this field to non-staff, and the usual operator/external operator to staff.

Parameters
user (django.contrib.auth.models.User) – the currently logged-in user

is_referentially_valid(samples_form)
Test whether the forms are consistent with each other and with the database. In its current form, it only checks
whether the sample is still “alive” at the time of the measurement.

Parameters
samples_form (SampleSelectForm or MultipleSamplesSelectForm) – a
bound samples selection form

Returns
whether the forms are consistent with each other and the database

Return type
bool

class DepositionForm(user, data=None, **kwargs)
Model form for depositions (not their layers).

Parameters
user (django.contrib.auth.models.User) – the currently logged-in user

is_referentially_valid(samples_form)
Test whether the forms are consistent with each other and with the database. In its current form, it only checks
whether the sample is still “alive” at the time of the measurement.

Parameters
samples_form (SampleSelectForm or MultipleSamplesSelectForm) – a
bound samples selection form

Returns
whether the forms are consistent with each other and the database

Return type
bool

class SampleSelectForm(user, process_instance, preset_sample, *args, **kwargs)
Form for the sample selection field. You can only select one sample per process (in contrast to depositions).

Parameters

• user (django.contrib.auth.models.User) – the current user

• process_instance (samples.models.Process) – the process instance to be
edited, or None if a new is about to be created

• preset_sample (samples.models.Sample) – the sample to which
the process should be appended when creating a new process; see utils.
extract_preset_sample

84 Chapter 12. Utilities

JuliaBase, Release 1.0

class DepositionSamplesForm(user, deposition, preset_sample, data=None, **kwargs)
Form for the list selection of samples that took part in the deposition. This form has the special behaviour that it
prevents changing the samples when editing an existing process.

class EditDescriptionForm(*args, **kwargs)
Form for letting the user enter a short description of the changes they made.

12.5 Plots

The following names are found in the module samples.utils.plots.

exception PlotError

Raised if an error occurs while generating a plot. Usually, it is raised in samples.models.Process.
draw_plot() and caught in samples.views.plots.show_plot().

read_plot_file_beginning_at_line_number(filename, columns, start_line_number,
end_line_number=None, separator=None)

Read a datafile and returns the content of selected columns beginning at start_line_number. You shouldn’t use this
function directly. Use the specific functions instead.

Parameters

• filename (str) – full path to the data file

• columns (list of int) – the columns that should be read.

• start_line_number (int) – the line number where the data starts

• end_line_number (int or None) – the line number where the record should end. The
default is None, means till end of file.

• separator (str or None) – the separator which separates the values from each other.
Default is None

Returns
List of all columns. Every column is represented as a list of floating point values.

Return type
list of list of float

Raises
PlotError – if something wents wrong with interpreting the file (I/O, unparseble data)

read_plot_file_beginning_after_start_value(filename, columns, start_value, end_value='',
separator=None)

Read a datafile and return the content of selected columns after the start_value was detected. You shouldn’t use
this function directly. Use the specific functions instead.

Parameters

• filename (str) – full path to the data file

• columns (list of int) – the columns that should be read.

• start_value (str) – the start_value indicates the line after the data should be read

• end_value (str) – the end_value marks the line where the record should end. The default
is the empty string

12.5. Plots 85

JuliaBase, Release 1.0

• separator (str or None) – the separator which separates the values from each other.
Default is None

Returns
List of all columns. Every column is represented as a list of floating point values.

Return type
list of list of float

Raises
PlotError – if something wents wrong with interpreting the file (I/O, unparseble data)

12.6 URLs

The following name is found in the module samples.utils.urls.

class PatternGenerator(url_patterns, views_prefix, app_label=None)
This class helps to build URL pattern lists for physical processes. You instantiate it once in your URLconf file.
Then, you add URLs by calling physical_process for every physical process:

pattern_generator = PatternGenerator(urlpatterns, "institute.views.samples")
pattern_generator.deposition("ClusterToolDeposition", views={"add", "edit"})
pattern_generator.deposition("FiveChamberDeposition", "5-chamber_depositions")
pattern_generator.physical_process("PDSMeasurement", "number")
pattern_generator.physical_process("Substrate", views={"edit"})

Important: Various places of JuliaBase assume that the URL patterns of physical processes reside in a namespace
which has the same name as the app which holds the associated model classes. So take care that this is the case!

Parameters

• url_patterns (list of path() or re_path() instances) – The URL patterns to popu-
late in situ.

• views_prefix (str) – the prefix for the view functions as a Python path, e.g. "my_app.
views.samples"

• app_label (str) – The label of the app to which the generated URLs will belong to.
Defaults to the first component of views_prefix.

deposition(class_name, url_name=None, views={'add', 'edit', 'lab_notebook'})
Add URLs for the views of the deposition process class_name. This is a shorthand for physi-
cal_process with defaults optimized for depositions: identifying_field is "number", and the
views include a lab notebook.

Parameters

• class_name (str) – Name of the deposition class, e.g. "FiveChamberDeposi-
tion".

• url_name (str) – The URL path component to be used for this deposition. By de-
fault, this is the class name converted to underscores notation, with an “s” appended, e.g.
"thickness_measurements".

• views (set of str) – The view functions for which URLs should be generated. You
may choose from "add", "edit", "custom_show", and "lab_notebook".

physical_process(class_name, identifying_field=None, url_name=None, views={'add', 'edit'})
Add URLs for the views of the physical process class_name. For the “add” and the “edit” view,
an edit(request, process_class_name_id) function must exist. In case of “add”, None

86 Chapter 12. Utilities

JuliaBase, Release 1.0

is passed as the second parameter. For the “custom show” view, a show(request, pro-
cess_class_name_id) function must exist. If there is an identifying_field, this is used for the
second parameter name instead. If no URL for a custom show view is requested, a default one is generated
using a generic view function (which is mostly sufficient).

Parameters

• class_name (str) – Name of the physical process class, e.g. "ThicknessMeasure-
ment".

• identifying_field (str) – If applicable, name of the model field which serves as
“poor man’s” primary key. If not given, the field name is derived from the model’s JBMeta
class, and if this fails, id is used. This parameter is deprecated and will be removed in
JuliaBase 1.2.

• url_name (str) – The URL path component to be used for this process. By default, this
is the class name converted to underscores notation, with an “s” appended, e.g. "thick-
ness_measurements". It may contain slashs.

• views (set of str) – The view functions for which URLs should be generated. You
may choose from "add", "edit", "custom_show", and "lab_notebook".

12.6. URLs 87

JuliaBase, Release 1.0

88 Chapter 12. Utilities

CHAPTER

THIRTEEN

TEMPLATE TAGS AND FILTERS

13.1 JuliaBase core

You use these tags and filter with:

{% load juliabase %}

13.1.1 Tags

markdown_hint()

Tag for inserting a short remark that Markdown syntax must be used here, with a link to further information.

input_field(field)
Tag for inserting a field value into an HTML table as an editable field. It consists of two <td> elements, one for
the label and one for the value, so it spans two columns. This tag is primarily used in templates of edit views.
Example:

{% input_field deposition.number %}

error_list(form, form_error_title, outest_tag='<table>', colspan=1)
Includes a comprehensive error list for one particular form into the page. It is an HTML table, so take care that the
tags are nested properly. Its template can be found in the file "error_list.html".

Parameters

• form (forms.Form) – the bound form whose errors should be displayed; if None, nothing
is generated

• form_error_title (str) – The title used for general error messages. These are not
connected to one particular field but the form as a whole. Typically, they are generated in the
is_referentially_valid functions.

• outest_tag (str) – May be "<table>" or "<tr>", with "<table>" as the default.
It is the outmost HTML tag which is generated for the error list.

• colspan (int) – the width of the table in the number of columns; necessary because those
&%$# guys of WHATWG have dropped colspan=”0”; see http://www.w3.org/Bugs/Public/
show_bug.cgi?id=13770

89

http://www.w3.org/Bugs/Public/show_bug.cgi?id=13770
http://www.w3.org/Bugs/Public/show_bug.cgi?id=13770

JuliaBase, Release 1.0

13.1.2 Filters

get_really_full_name(user, anchor_type='http')
Unfortunately, Django’s get_full_namemethod for users returns the empty string if the user has no first and surname
set. However, it’d be sensible to use the login name as a fallback then. This is realised here. See also jb_common.
utils.get_really_full_name.

The optional parameter to this filter determines whether the name should be linked or not, and if so, how. There
are three possible parameter values:

"http" (default)
The user’s name should be linked with his web page on JuliaBase

"mailto"
The user’s name should be linked with his email address

"plain"
There should be no link, the name is just printed as plain unformatted text.

markdown(value, margins='default')
Filter for formatting the value by assuming Markdown syntax. Embedded HTML tags are always escaped. Warn-
ing: You need at least Python Markdown 1.7 or later so that this works.

FixMe: Before Markdown sees the text, all named entities are replaced, see jb_common.utils.
substitute_html_entities(). This creates a mild escaping problem. \& becomes &amp;
instead of \&. It can only be solved by getting python-markdown to replace the entities, however, I can’t
easily do that without allowing HTML tags, too.

fancy_bool(boolean)
Filter for coverting a bool into a translated “Yes” or “No”.

urlquote(value)
Filter for quoting strings so that they can be used as parts of URLs. Note that also slashs »/« are escaped.

Also note that this filter is “not safe” because for example ampersands need to be further escaped.

urlquote_plus(value)
Filter for quoting URLs so that they can be used within other URLs. This is useful for added “next” URLs in query
strings, for example:

<a href="{{ process.edit_url }}?next={{ sample.get_absolute_url|urlquote_plus }}"
>{% translate 'edit' %}

13.2 Samples

You use these tags and filter with:

{% load samples_extras %}

90 Chapter 13. Template tags and filters

JuliaBase, Release 1.0

13.2.1 Tags

verbose_name(parser, token)
Tag for retrieving the descriptive name for an instance attribute. For example:

{% verbose_name Deposition.pressure %}

will print “pressure”. Note that it will be translated for a non-English user. It is useful for creating labels. The
model name may be of any model in any installed app. If two model names collide, the one of the firstly installed
app is taken.

value_field(parser, token)
Tag for inserting a field value into an HTML table. It consists of two <td> elements, one for the label and one for
the value, so it spans two columns. This tag is primarily used in templates of show views, especially those used to
compile the sample history. Example:

{% value_field layer.base_pressure "W" 3 %}

The unit ("W" for “Watt”) is optional. If you have a boolean field, you can give "yes/no" as the unit, which
converts the boolean value to a yes/no string (in the current language). For gas flow fields that should collapse
if the gas wasn’t used, use "sccm_collapse". If not given but the model field has a unit set (i.e. ...
QuantityField), that unit is used.

The number 3 is also optional. However, if it is set, the unit must be at least "". With this option you can set the
number of significant digits of the value. The value will be rounded to match the number of significant digits.

split_field(*fields)
Tag for combining two or three input fields wich have the same label and help text. It consists of three or more
<td> elements, one for the label and one for the input fields (at least two), so it spans multiple columns. This tag
is primarily used in templates of edit views. Example:

{% split_field layer.voltage1 layer.voltage2 %}

The tag assumes that for from–to fields, the field name of the upper limit must end in "_end", and for ordinary
multiple fields, the verbose name of the first field must end in a space-separated number or letter. For example, the
verbose names may be "voltage 1", "voltage 2", and "voltage 3".

value_split_field(parser, token)
Tag for combining two or more value fields wich have the same label and help text. It consists of two <td>
elements, one for the label and one for the value fields, so it spans two columns. This tag is primarily used in
templates of show views, especially those used to compile the sample history. Example:

{% value_split_field layer.voltage_1 layer.voltage_2 "V" %}

The unit ("V" for “Volt”) is optional. If you have a boolean field, you can give "yes/no" as the unit, which
converts the boolean value to a yes/no string (in the current language). For gas flow fields that should collapse
if the gas wasn’t used, use "sccm_collapse". If not given but the model field has a unit set (i.e. ...
QuantityField), that unit is used.

13.2. Samples 91

JuliaBase, Release 1.0

13.2.2 Filters

round(value, digits)
Filter for rounding a numeric value to a fixed number of significant digits. The result may be used for the quan-
tity() filter below.

quantity(value, unit=None, autoescape=False)
Filter for pretty-printing a physical quantity. It converts 3.4e-3 into 3.4 · 10−3. The number is the part that is
actually filtered, while the unit is the optional argument of this filter. So, you may write:

{{ deposition.pressure|quantity:"mbar" }}

It is also possible to give a list of two values. This is formatted in a from–to notation.

get_really_full_name(user, anchor_type='http')
Unfortunately, Django’s get_full_namemethod for users returns the empty string if the user has no first and surname
set. However, it’d be sensible to use the login name as a fallback then. This is realised here. See also samples.
utils.views.get_really_full_name().

The optional parameter to this filter determines whether the name should be linked or not, and if so, how. There
are three possible parameter values:

"http" (default)
The user’s name should be linked with his web page on JuliaBase

"mailto"
The user’s name should be linked with his email address

"plain"
There should be no link, the name is just printed as plain unformatted text.

get_safe_operator_name(user)
Return the name of the operator (with the markup generated by get_really_full_name and the "http"
option) unless it is a confidential external operator.

timestamp(value, minimal_inaccuracy=0)
Filter for formatting the timestamp of a process properly to reflect the inaccuracy connected with this timestamp.
It works not strictly only for models. In fact, any object with a timestamp field can be passed in. If no times-
tamp_inaccuracy field is present in the value, 0 (accuracy to the second) is assumed.

Instead of a model instance, a dict objects may be used as the input value. In this case, keys instead of attributes
are looked up, but with the same names.

Parameters

• value (models.Model or dict mapping str to object) – the model whose timestamp should
be formatted

• minimal_inaccuracy (int) – minimal inaccuracy used for display

Returns
the rendered timestamp

Return type
str

markdown_samples(value, margins='default')
Filter for formatting the value by assumingMarkdown syntax. Additionally, sample names and sample series names
are converted to clickable links. Embedded HTML tags are always escaped. Warning: You need at least Python
Markdown 1.7 or later so that this works.

92 Chapter 13. Template tags and filters

JuliaBase, Release 1.0

FixMe: Before Markdown sees the text, all named entities are replaced, see samples.utils.views.
substitute_html_entities. This creates a mild escaping problem. \& becomes &amp;
instead of \&. It can only be solved by getting python-markdown to replace the entities, however, I can’t
easily do that without allowing HTML tags, too.

first_upper(value)

Filter for formatting the value to set the first character to uppercase.

sample_tags(sample, user)
Shows the sample’s tags. The tags are shortened. Moreover, they are suppressed if the user is not allowed to view
them.

camel_case_to_human_text(value)
See jb_common.utils.base.camel_case_to_human_text for documentation.

13.2. Samples 93

JuliaBase, Release 1.0

94 Chapter 13. Template tags and filters

CHAPTER

FOURTEEN

MARKDOWN

If you enter a comment, this is just plain text at first. However, JuliaBase supports a special syntax in these comments.
This makes them more useful.

This special syntax was not invented for JuliaBase. Instead, it is a well-known markup syntax called “Markdown”. See
also its homepage for the full story. However, for practical reasons, JuliaBase forbids image inclusion and headings in its
comments. But you can use all the rest. Note that some characters (e.g. »_«, »*«, »[«) have a special meaning, so if you
want to use them as-is, you have to prepend a backslash »\«.

JuliaBase even adds a nice feature itself: If you enter the name of a sample or a sample series, JuliaBase converts it to a
clickable link automatically. Within names, prepending a backslash to »_« is not necessary.

If you like to test JuliaBase’s comment syntax, visit the Markdown sandbox on the demo site.

14.1 Paragraphs

Paragraphs are separated by an empty line:

First paragraph.

Second paragraph.

Output:

First paragraph.

Second paragraph.

14.2 Emphasis

italics, **bold**. Alternatively: _italics_, __bold__

italics, bold. Alternatively: italics, bold

95

http://en.wikipedia.org/wiki/markdown
http://daringfireball.net/projects/markdown/basics
https://demo.juliabase.org/markdown

JuliaBase, Release 1.0

14.3 Escaping characters

If you like to use a character as-is but Markdown interprets it as something special, put a backslash before it:

In *italics*, and this is not in *italics*.

In italics, and this is not in *italics*.

Note that this is not necessary in sample names. For example, in “08B-410_a_3”, nothing gets italic (if this sample
exists).

14.4 Special characters

σ = e n μ
µc-Si:H

σ = e n μ
µc-Si:H

See the Wikipedia entry for a full list of these characters.

14.5 Math equations

You can use LaTeX equations between $…$:

$\alpha = \frac{1}{\beta}$

α = 1
β

14.6 Links

[Homepage of IBM](http://www.ibm.com), <http://www.fz-juelich.de>

Homepage of IBM, http://www.fz-juelich.de

Note that names of samples and sample series are converted to links automatically.

14.7 Lists

1. sputtering
2. etching
3. depositing

1. sputtering

2. etching

3. depositing

Yes, that’s not the same! ;-) For long lines, indentation is correct this way.

96 Chapter 14. Markdown

http://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
http://www.ibm.com
http://www.fz-juelich.de

JuliaBase, Release 1.0

* this
* that
* and this, too

• this

• that

• and this, too

14.8 Line breaks

Put two spaces at the end of the line:

First line.<SPC><SPC>
Second line.

First line.
Second line.

14.8. Line breaks 97

JuliaBase, Release 1.0

98 Chapter 14. Markdown

CHAPTER

FIFTEEN

THE JULIABASE PROJECT

JuliaBase is an open-source project in the spirit of Free Software. As such, its community is equally open. Our first goal
is to have a large community of people adapting JuliaBase to their institutions. While working with JuliaBase’s source
code, these people will probably make improvements. Our second goal is to encourage everyone to contribute these
improvements to the public JuliaBase code. This way, everyone can benefit from the improvements of everyone else!

The home of JuliaBase is its home page. The domain name “juliabase.org” is registered to the Research Centre Jülich,
Germany, which also hosts the site. However, the content of the home page, including all logos, is part of JuliaBase’s source
code and licensed as Free Software. The current maintainer of JuliaBase is Torsten Bronger, bronger@physik.rwth-
aachen.de.

• Most importantly, JuliaBase’s full source code is organized as a public source code repository.

• Also on GitHub is our bug and feature tracker.

• We have a public mailing list at GoogleGroups. This is both for discussions about the development process as well
as general questions. We recommend that you subscribe to this list before sending emails to it. (You don’t need a
Google account for this. Ask the maintainer if you have questions.)

• For Usenet fans, this mailing list is also available on Gmane as a newsgroup.

• On irc.freenode.net is our IRC chat room called #juliabase.

• The translations are coordinated on Transifex

15.1 Licenses

JuliaBase’s core is licensed under the terms of the Affero GNU Public License (AGPL).

The following files, however, are distributed under the terms of the less strict GNU General Public License (GPL):

• The top-level files settings.py, wsgi.py, manage.py, urls.py, and log.py

• All files below institute/ (the “institute” app)

• remote_client/jb_remote_inm.py

• remote_client/delphi/juliabase.pas

• All files below remote_client/examples/

Finally, the “mimeparse” module is distributed under its own terms stated at the start of the respective file.

99

http://www.juliabase.org
mailto:bronger@physik.rwth-aachen.de
mailto:bronger@physik.rwth-aachen.de
https://github.com/juliabase
https://github.com/juliabase/juliabase/issues
https://groups.google.com/forum/?hl=de#!forum/juliabase
http://dir.gmane.org/gmane.comp.db.juliabase
https://www.transifex.com/organization/juliabase/dashboard/juliabase
http://www.gnu.org/licenses/agpl-3.0.de.html
http://www.gnu.org/licenses/gpl-3.0.html

JuliaBase, Release 1.0

15.1.1 What does this mean?

It effectively means:

1. You can download, run, and modify JuliaBase freely.

2. You can use all files that serve as examples (in particular, the “institute” app) as a starting point for your adaption
of JuliaBase.

3. You can offer a JuliaBase web service in your institute, company, or whatever, as long as you also offer the Juli-
aBase source code, including your modifications, for download for your users. You can fulfill this requirement by
contributing your modifications to the JuliaBase project.

4. The GPL ensures that you do not need to offer the files of (2.) for download or to contribute them, as they may
contain confidential material. Besides, they will change often, so it would be a hassle.

This rather elaborate licensing is done in order to have maximal convenience and flexibility for people who adapt and use
JuliaBase, while strongly encourage them to contribute improvements of JuliaBase itself back to the community at large.

Thus, have fun using JuliaBase behind closed doors, but if you improve it, please send patches to the JuliaBase maintainers
so that everyone benefits. Thank you!

15.2 Short project history

JuliaBase was started in 2008 in one institute of the Forschungszentrum Jülich under the name of “Chantal” by Torsten
Bronger. In 2009, Marvin Goblet was hired as a full-time programmer for Chantal. In 2013/14, three further institutes in
Jülich created Chantal deployments, and with them, further programmers joined the team. The core of the source code
was separated from the institute-specific parts and re-branded as “JuliaBase”. This name is derived from Iuliacum, the
Latin name of Jülich, where JuliaBase was contrived.

100 Chapter 15. The JuliaBase project

PYTHON MODULE INDEX

j
jb_remote.common, 44
jb_remote.samples, 46

101

JuliaBase, Release 1.0

102 Python Module Index

INDEX

A
adapting, 21
add

process module, 25
sample, 10, 25

ADD_SAMPLES_VIEW, 55
advanced

search, 9
Apache

configuration, 20
architecture, 67
as_json() (in module jb_remote.common), 45

B
bindings

language, 49
branding, 24
build_forms() (ProcessWithoutSamplesViewmethod),

34

C
CACHE_ROOT, 55
CACHES (setting), 60
camel_case_to_human_text() (in module

jb_common.utils.base), 69
camel_case_to_human_text() (in module sam-

ples.templatetags.samples_extras), 93
camel_case_to_underscores() (in module

jb_common.utils.base), 69
chat room, 97
check_filepath() (in module jb_common.utils.base),

70
check_markdown() (in module jb_common.utils.base),

77
claim

sample, 17
class-based

views, 32
coding

guidelines, 67
comments

process, 93

community, 97
configuration

Apache, 20
Django, 20
PostgreSQL, 19

connection (in module jb_remote.common), 44
convert_id_to_int() (in module sam-

ples.utils.views), 76
CRAWLER_LOGS_ROOT, 55
CRAWLER_LOGS_WHITELIST, 55
crawlers, 41
CSV

export, data, 10

D
data

CSV export, 10
data sheet

sample, 5
dead_samples() (in module samples.utils.views), 73
DEBUG (setting), 60
DEBUG_EMAIL_REDIRECT_USERNAME, 56
DEFAULT_FROM_EMAIL, 60
delete

process, 8
sample, 8

Delphi, 50
demo, 3
deposition() (PatternGenerator method), 86
DepositionForm (class in samples.utils.views), 84
DepositionMultipleTypeView (class in sam-

ples.utils.views), 36
DepositionSamplesForm (class in sam-

ples.utils.views), 84
DepositionView (class in samples.utils.views), 36
Django

configuration, 20
does_sample_exist() (in module sam-

ples.utils.sample_names), 75
double_urlquote() (in module jb_remote.common),

45

103

JuliaBase, Release 1.0

E
edit

sample, 8
EditDescriptionForm (class in samples.utils.views),

85
environment variable

PYTHONPATH, 43
equations, 96
error_list() (in module

jb_common.templatetags.juliabase), 89
export

data CSV, 10
extract_preset_sample() (in module sam-

ples.utils.views), 74

F
fancy_bool() (in module

jb_common.templatetags.juliabase), 90
feed, 15
filters

template, 87
find_file_in_directory() (in module

jb_common.utils.base), 70
first_upper() (in module sam-

ples.templatetags.samples_extras), 93
format_enumeration() (in module

jb_common.utils.base), 69
format_timestamp() (in module

jb_remote.common), 45
formulae, 96
functions

utility, 68

G
generate_permissions() (in module

jb_common.utils.base), 78
get_context_data() (ProcessWithoutSamplesView

method), 34
get_context_for_user(), 29
get_next_id() (ProcessWithoutSamplesViewmethod),

34
get_really_full_name() (in module

jb_common.templatetags.juliabase), 90
get_really_full_name() (in module

jb_common.utils.base), 76
get_really_full_name() (in module sam-

ples.templatetags.samples_extras), 92
get_safe_operator_name() (in module sam-

ples.templatetags.samples_extras), 92
get_sample() (in module samples.utils.sample_names),

75
get_title() (ProcessWithoutSamplesViewmethod), 34
git, 24

guidelines
coding, 67

H
help_link() (in module jb_common.utils.base), 77
HELP_LINK_PREFIX, 56
history

project, 100

I
id (User property), 47
initials

user, 64
INITIALS_FORMATS, 56
input_field() (in module

jb_common.templatetags.juliabase), 89
installation, 17
INSTALLED_APPS, 60
irc, 97
is_all_valid() (ProcessWithoutSamplesView

method), 35
is_json_requested() (in module

jb_common.utils.base), 72
is_referentially_valid() (DepositionForm

method), 84
is_referentially_valid() (ProcessForm

method), 84
is_referentially_valid() (ProcessWithoutSam-

plesView method), 35
is_update_necessary() (in module

jb_common.utils.base), 70

J
JAVASCRIPT_I18N_APPS, 56
JB_LOGGING_PATH, 59
jb_remote.common

module, 44
jb_remote.samples

module, 46
JSONRequestException, 71
JuliaBaseConnection (class in jb_remote.common),

44
JuliaBaseError, 44

L
lab notebook, 11, 30
LabVIEW, 51
language

bindings, 49
LANGUAGES (setting), 60
LDAP, 57
LDAP_ACCOUNT_FILTER, 57
LDAP_ADDITIONAL_ATTRIBUTES, 57
LDAP_ADDITIONAL_USERS, 57

104 Index

JuliaBase, Release 1.0

LDAP_DEPARTMENTS, 58
LDAP_GROUPS_TO_PERMISSIONS, 58
LDAP_LOGIN_TEMPLATE, 58
LDAP_PASSWORD, 58
LDAP_SEARCH_DN, 59
LDAP_URLS, 59
LDAP_USER, 59
license, 99
login() (in module jb_remote.common), 45
LOGIN_REDIRECT_URL, 61
LOGIN_URL, 60
logout() (in module jb_remote.common), 45
lookup_sample() (in module samples.utils.views), 73

M
mailing list, 97
main menu, 4
markdown, 93
markdown() (in module

jb_common.templatetags.juliabase), 90
markdown_hint() (in module

jb_common.templatetags.juliabase), 89
markdown_samples() (in module sam-

ples.templatetags.samples_extras), 92
maths, 96
measurement, 30
MERGE_CLEANUP_FUNCTION, 56
MIDDLEWARE, 61
migration

schema, 26
mkdirs() (in module jb_common.utils.base), 71
module

add process, 25
jb_remote.common, 44
jb_remote.samples, 46

MultipleStepsMixin (class in samples.utils.views),
37

MultipleStepTypesMixin (class in sam-
ples.utils.views), 37

MultipleUsersField (class in
jb_common.utils.views), 83

My Samples, 4
My steps, 38

N
name

prefix templates, 65
NAME_PREFIX_TEMPLATES, 57
names

sample, 62
sample provisional, 64

newsfeed, 15
newsgroup, 97

normalize_sample_name() (in module sam-
ples.utils.sample_names), 75

notifications, 15

O
open() (JuliaBaseConnection method), 44

P
parse_timestamp() (in module jb_remote.common),

45
PatternGenerator (class in samples.utils.urls), 86
permissions, 5, 11, 17, 30

user, 3
permissions (User property), 47
physical process, 30
physical_process() (PatternGenerator method), 86
PlotError, 85
PostgreSQL

configuration, 19
prefix

templates, name, 65
prerequisites, 19
primary_keys (in module jb_remote.common), 44
PrimaryKeys (class in jb_remote.common), 45
privileges

user, 3
process, 8, 25, 30

comments, 93
delete, 8
module, add, 25
template, 28
unfinished, 31
view, 27

ProcessForm (class in samples.utils.views), 84
ProcessMultipleSamplesView (class in sam-

ples.utils.views), 36
ProcessView (class in samples.utils.views), 35
ProcessWithoutSamplesView (class in sam-

ples.utils.views.class_views), 33
project

history, 100
provisional

names, sample, 64
PYTHONPATH, 43

Q
quantity() (in module sam-

ples.templatetags.samples_extras), 92

R
read_plot_file_beginning_after_start_value()

(in module samples.utils.plots), 85
read_plot_file_beginning_at_line_number()

(in module samples.utils.plots), 85

Index 105

JuliaBase, Release 1.0

remote client, 39, 47
remove_file() (in module jb_common.utils.base), 71
remove_samples_from_my_samples() (in mod-

ule samples.utils.views), 74
RemoveFromMySamplesMixin (class in sam-

ples.utils.views), 36
report_changed_sample_series_topic()

(Reporter method), 79
report_changed_sample_topic() (Reporter

method), 79
report_changed_topic_membership() (Re-

porter method), 79
report_copied_my_samples() (Reporter

method), 79
report_deleted_process() (Reporter method),

80
report_deleted_sample() (Reporter method), 80
report_edited_sample_series() (Reporter

method), 80
report_edited_samples() (Reporter method), 80
report_new_responsible_person_sample_series()

(Reporter method), 80
report_new_responsible_person_samples()

(Reporter method), 80
report_new_sample_series() (Reporter

method), 81
report_new_samples() (Reporter method), 81
report_physical_process() (Reporter method),

81
report_removed_task() (Reporter method), 81
report_result_process() (Reporter method), 81
report_sample_split() (Reporter method), 81
report_status_message() (Reporter method), 82
report_task() (Reporter method), 82
report_withdrawn_status_message() (Re-

porter method), 82
Reporter (class in samples.utils.views), 78
repository, 97
respond_in_json() (in module

jb_common.utils.base), 72
restricted_samples_query() (in module sam-

ples.utils.views), 74
result, 8, 30
Result (class in jb_remote.samples), 46
round() (in module jb_common.utils.base), 77
round() (in module sam-

ples.templatetags.samples_extras), 92

S
sample

add, 10, 25
claim, 12, 17
data sheet, 5
delete, 8

edit, 8
names, 62
provisional names, 64
send to user, 14
series, 4
split, 8

Sample (class in jb_remote.samples), 47
sample_name_format() (in module sam-

ples.utils.sample_name_formats), 75
SAMPLE_NAME_FORMATS, 57, 63
sample_tags() (in module sam-

ples.templatetags.samples_extras), 93
SamplePositionsMixin (class in sam-

ples.utils.views), 36
SampleSelectForm (class in samples.utils.views), 84
sanitize_for_markdown() (in module

jb_remote.common), 46
save_to_database() (ProcessWithoutSamplesView

method), 35
schema

migration, 26
SECRET_KEY, 61
send to user

sample, 14
send_email() (in module jb_common.utils.base), 77
series

sample, 4
set_topics() (TopicField method), 83
set_users() (MultipleUsersField method), 83
set_users() (UserField method), 82
set_users_without() (UserField method), 83
settings, 54
setup_logging() (in module jb_remote.common), 46
source code, 97

structure, 23
split

sample, 8
split_field() (in module sam-

ples.templatetags.samples_extras), 91
startup() (ProcessWithoutSamplesView method), 35
static_response() (in module

jb_common.utils.base), 72
steps, 38
structure

source code, 23
submit() (Result method), 47
submit() (Sample method), 47
sub-processes, 38
SubprocessesMixin (class in samples.utils.views), 37
SubprocessForm (class in samples.utils.views), 36
SubprocessMultipleTypesForm (class in sam-

ples.utils.views), 36
successful_response() (in module sam-

ples.utils.views), 72

106 Index

JuliaBase, Release 1.0

T
table_export() (in module samples.utils.views), 76
tags

template, 87
tasks, 16
template

filters, 87
process, 28
tags, 87

TEMPLATES, 61
templates

name prefix, 65
TemporaryMySamples (class in jb_remote.samples),

47
THUMBNAIL_WIDTH, 57
TIME_ZONE, 62
timestamp() (in module sam-

ples.templatetags.samples_extras), 92
TopicField (class in jb_common.utils.views), 83
topics, 4, 5
topics (User property), 47

U
unfinished

process, 31
urlquote() (in module

jb_common.templatetags.juliabase), 90
urlquote_plus() (in module

jb_common.templatetags.juliabase), 90
URLs, 27
USE_TZ, 62
usenet, 97
user

initials, 64
permissions, 3
privileges, 3

User (class in jb_remote.samples), 47
user context, 29
UserField (class in jb_common.utils.views), 82
utility

functions, 68

V
value_field() (in module sam-

ples.templatetags.samples_extras), 91
value_split_field() (in module sam-

ples.templatetags.samples_extras), 91
verbose_name() (in module sam-

ples.templatetags.samples_extras), 91
verbose_sample_name_format() (in module

samples.utils.sample_name_formats), 75
view

process, 27
views

class-based, 32
Visual Basic, 50

Index 107

	Introduction
	Contact
	Technical overview
	Public releases
	Getting started

	A walk through JuliaBase
	The demo site
	The demo accounts
	The boss
	The technical staff
	The scientific staff

	Rosalee: The everyday work
	The “My Samples” list
	Topics
	Sample data sheet
	Edit samples
	Add processes
	Delete samples and processes
	Split a sample
	Result process

	Advanced search
	Data export
	Add samples
	Lab notebooks
	Add new deposition process
	Change permissions for processes
	Claims of samples
	Adding a sample to My Samples
	The actual claim

	Juliette: The assigner of work
	Adding a task
	Sending a sample to another user

	Nick: Technical service for others
	The newsfeed
	Tasks

	Sean: The team leader
	Approve a sample claim

	Installation
	Prerequisites
	Linux configuration
	PostgreSQL
	Django
	JuliaBase
	Apache

	Programming
	Organizing your source code
	Settings
	Git subtree

	Creating a new Django app
	Branding
	The “add new samples” view
	Physical processes

	Adding a new process module
	Overview
	Creating the database models
	Schema migration

	Creating the URLs
	Creating the view
	The form
	View class

	Creating the templates

	A more complex example: Writing a deposition module
	The models
	Populating user context
	The view
	The lab notebook

	Process glossary

	Model permissions
	Semantics and conventions
	Example

	Omitting permissions
	Django’s default permissions

	Class-based views
	The API
	Main classes
	Mixins
	Sub-processes
	SubprocessesMixin
	MultipleStepsMixin
	“My steps”

	MultipleStepTypesMixin

	The remote client
	Use cases
	Crawlers
	Connecting the setup with the database
	Data mining and analysis

	Extending the remote client
	Settings

	Local installation and usage
	Classes and functions

	Talking to JuliaBase
	The big picture
	Installation
	Basic usage
	Python
	Visual Basic
	Delphi
	LabVIEW
	Getting data in non-Python languages
	The test server

	Error handling
	Error pages in the browser

	About passwords
	How do I …
	… check whether the user is known to JuliaBase?
	… check whether the user is allowed to use my setup?
	… check whether a sample exists?
	… add a new process?

	Settings reference
	General JuliaBase settings
	ADD_SAMPLES_VIEW
	CACHE_ROOT
	CRAWLER_LOGS_ROOT
	CRAWLER_LOGS_WHITELIST
	DEBUG_EMAIL_REDIRECT_USERNAME
	HELP_LINK_PREFIX
	INITIALS_FORMATS
	JAVASCRIPT_I18N_APPS
	MERGE_CLEANUP_FUNCTION
	NAME_PREFIX_TEMPLATES
	SAMPLE_NAME_FORMATS
	THUMBNAIL_WIDTH

	Settings for LDAP
	LDAP_ACCOUNT_FILTER
	LDAP_ADDITIONAL_ATTRIBUTES
	LDAP_ADDITIONAL_USERS
	LDAP_DEPARTMENTS
	LDAP_GROUPS_TO_PERMISSIONS
	LDAP_LOGIN_TEMPLATE
	LDAP_PASSWORD
	LDAP_SEARCH_DN
	LDAP_URLS
	LDAP_USER
	JB_LOGGING_PATH

	Django settings with special meaning in JuliaBase
	LANGUAGES
	CACHES
	DEBUG
	DEFAULT_FROM_EMAIL
	INSTALLED_APPS
	LOGIN_URL
	LOGIN_REDIRECT_URL
	MIDDLEWARE
	SECRET_KEY
	TEMPLATES
	DIRS
	loaders

	USE_TZ
	TIME_ZONE

	Sample names
	Name format properties
	"pattern"
	"possible_renames"
	"verbose_name"

	Provisional sample names
	Initials
	"pattern"
	"description"

	Name prefix templates

	Hacking on JuliaBase
	Architecture
	Coding guidelines
	Boilerplate code

	Utilities
	Common helpers
	String-related
	File-related
	Generating responses
	Sample-related
	Miscellaneous

	Feed reporting
	Form field classes
	Form classes
	Plots
	URLs

	Template tags and filters
	JuliaBase core
	Tags
	Filters

	Samples
	Tags
	Filters

	Markdown
	Paragraphs
	Emphasis
	Escaping characters
	Special characters
	Math equations
	Links
	Lists
	Line breaks

	The JuliaBase project
	Licenses
	What does this mean?

	Short project history

	Python Module Index
	Index

